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Convergent genome evolution shaped
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Background

* Independently landing events, similar physiological and environmental challenges
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Milnesium tardigradum, a eutardigrade Oroperipatus sp. (Peripatidae)

Temporal range: Temporal range: Temporal range: Lower Cambrian — Present,

 phenotypic convergence:
water-retentive skin,
modified vision in aerial
environment

* Question: Is adaptation to
land a result of contingency
(random, lineage-specific) or
convergence (predictable
genomic responses)?



The InterEvo Framework
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e Dataset: 154 genomes from 21 phyla, focusing on 11 independent terrestrialization events




Numbers of homology groups

Numbers of homology groups

Numbers of homology groups

Genome Dynamics in Terrestrialization
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large turnover of gene gains
and reductions

high level of genome
plasticity

Lower novelty might rely
more on gene co-option



Convergent Functions via Gene Gains
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Convergent loss of regeneration-related genes (RhoGEF components)

Chloride channels: Refining osmoregulation for dry environments.

Dietary shifts: The loss of the chlorophyllase protein family, indicating a move away from certain aquatic food
sources.

Circadian Rhythms: Contraction of melatonin-related receptors, likely adapting to land-based day-night cycles



Semi vs Fully Terrestrial Lineages
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a, PCoA of Jaccard dissimilarities based on GO terms presence/absence. b, PCoA of Jaccard dissimilarities based
on Pfams presence/absence.

* Semi-terrestrial (Expansive and versatile toolkit):

High convergence, focus on stress response, environmental flexibility, and cuticle remodeling (BB EE¥B).

* Fully Terrestrial (Small and streamlined set):

= IPAN

Lower convergence, focus on neuronal development and ion membrane homeostasis (B 2f275) essential for

permanent land colonization



Unique adaptations in terrestrial events

Bdelloid Rotifers & Tardigrades: Specialized stress-response and resistance genes for desiccation, —
extreme temperatures, and radiation.

estivation (EHR).

Arthropods (Insects, Myriapods, Arachnids):
Waterproofing: Expansion of genes for exoskeleton wax layer synthesis.
Vision: Expansion of retinol-binding proteins (1 &2 %5 &2 H) to adapt sight to aerial light conditions.

Tetrapods (Land Vertebrates): Massive enrichment in immunity functions(e.g., T-cell co-stimulation) to
support a specialized keratinized epidermis(ff{t 3 K), defending against terrestrial pathogens.
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Window 1 : Middle Cambrian to Middle Ordovician epochs
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Early arthropods(¥5 2 &1%7) and nematodes(%; & ); coincided
with early land plants.

Window 2 : Late Devonian to Early Carboniferous (R &
HERERRTITL)

Tetrapods(PH ;2 51%7) and clitellates(PA T 1%, R 57 2);
adapted in seasonal wetlands.

Window 3: 130-86 Ma, Cretaceous period (HZEZ)
Land snails([E & f8 /2 2£5047)) and rotifers(i2 2%t &h);

Cretaceous greenhouse landscapes with angiosperm
expansion.



Summary

Predictability: Adaptation to land is predictable at the functional level, linking genes
directly to ecosystems
Massive gene turnover:
Gain: High turnover of novel genes for osmoregulation, detoxification, and sensing
Loss: Recurrent loss of regeneration genes (RhoGEF), a major evolutionary trade-off

for terrestrial survival

Contingency& Convergence : While each lineage carries its own contingent history,
the extreme pressure of land life forced them toward similar molecular solutions

Territorialization illustrates the interplay between convergence and contingency,
highlighting both the repeatability and the uniqueness of evolutionary innovation.
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