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Background

X XXX X Regulation of gene expression and Two opposing functions
ZW W TSD XY Y,Y,Y,Y, Y, XY chromatin changes on the X and autosomes of XIST
XIST XIST Equalizing dosage of
Q ‘ :7 0 o @ @ X-linked genes
e rILs.
| EN XIST
H3K27me3 gene expression
‘ ‘ dampening T on bal
isrupting expression balance
108 Myr g XIST on autosomes
EI Ry ) ) = g
yr ‘
and (3‘ - 9
245 Myr H3K27me3 active gene A
| 280 Myr o o g XIST
expression
| 319 Myr
| (Cell, 2023)
Mammals: XY system, X inactivation in females (XIST)
*Birds: ZW system, unknown
Core problem: Dosage imbalance
G 7 Key question: How do birds compensate?




Background
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* Previous study:

Z-linked miRNA with 5-10x male-biased
expression;

Targets enriched for dosage-sensitive Z genes

* Questions:
miR-2954 functionally essential?

dosage compensation? Mechanisms?



Results

ZW ZKOW ZKOZ ZKOZKO
10 - 16 19 39 14 21 39 10 26 43 15 20 35
Inject into 5
PGEr;ctlJern;:I)ested -% Alive
a 0.5 Dead
o
a
¥ miRNA-2954
T MatwomiENA e |
%\ % I R | \ | I N I !
) 5 9 9 % H O © 5 5 D
"N o W ,\/'\ e ,\/\ g ,\/\ > ,\/\
RE
A HDR guide : fen:flf;tziieken
|peletion Embryonic age (day)
RE site
Embryos at embryonic day 14
w 9 9 14 13
/ 1.0
. C Zko7ko: Dead rate reaches 100%!
e
€ Alive
g 0.5 Dead .
§ & The survival rates of other genotypes
ferr‘:\;ilf-ctﬁii?(en -- are >79%
I I I I
(8]

36 bp deletion of mature miR-2954 in PGCs (primordial germ cells):
Multi-generational crossing to get homozygous (ZX°ZKO) males



Results

Z7KO0ZKO yg wild-type males—Is this dead specific to Z-linked genes?
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Ribosome profiling (measures protein synthesis
rates at high resolution) showed that the
upregulation extends to the translational level
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Other miRNAs did not change after miR-2954 KO

miR-2954 directly represses Z-linked transcripts



Results

Targeting of Dosage-Sensitive Genes—why does miR-2954 preferentially target Z-linked genes?
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Ohnologue: Dose-sensitive genes preserved
by whole-genome replication of vertebrates
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Female: current-to-ancestral expression ratios
exceeding 0.5 (log, ratio greater than —1)

Male: Expression of both targets and non-targets
remained close to the ancestral levels (log, ratio = 0)

should be 0.5 in female

Evolutionary Model of Avian Dosage Compensation—Why did birds evolve miRNA?
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W loss — upregulation of dose-sensitive Z-linked genes in both
sexes — male ZZ double dose causes overexpression
— evolution of transcriptional degradation mechanism mediated

by miR-2954



Results

Conservation Across Birds s this mechanism is conserved?
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Summary
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miR-2954 is essential for male viability by targeted
repression of dosage-sensitive Z-linked genes

Evolutionary Model: Female upregulation — Male
overexpression — miR-2954 compensation

"% Avian-Specific Mechanism: miR-2954 emerged with ZW
sex chromosomes, conserved across all birds

& RNA-Guided Precision: MicroRNA-mediated post-
transcriptional regulation solves dosage imbalance
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Innovation and limit

 Innovations:
 Functional evidence that a miRNA can be sex-essential

* A evolutionary strategy in birds: Targeted degradation vs.

mammalian silencing
* Solves the avian dosage compensation mystery

* Limitations:
* Phenotype limited to early embryonic lethality
* Single chicken breed
» Potential indirect effects on host gene
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Thanks for your attention!
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