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Over time, cells in the brain and in the body accumulate damage, which contributes to
the ageing process'. In the human brain, the prefrontal cortex undergoes age-related
changes that can affect cognitive functioning later in life’. Here, using single-nucleus
RNA sequencing (snRNA-seq), single-cell whole-genome sequencing (scWGS)

and spatial transcriptomics, we identify gene-expression and genomic changes
inthe human prefrontal cortex across lifespan, frominfancy to centenarian.
snRNA-seq identified infant-specific cell clusters enriched for the expression of
neurodevelopmental genes, as well as an age-associated common downregulation

of cell-essential homeostatic genes that functionin ribosomes, transport and
metabolism across cell types. Conversely, the expression of neuron-specific genes
generally remains stable throughout life. These findings were validated with spatial
transcriptomics. scWGS identified two age-associated mutational signatures that
correlate with gene transcription and gene repression, respectively, and revealed
gene length- and expression-level-dependent rates of somatic mutation in neurons
that correlate with the transcriptomic landscape of the aged human brain. Our results
provide insight into crucial aspects of human brain development and ageing, and shed
light on transcriptomic and genomic dynamics.

Bulk RNA-sequencing studies of ageing have revealed disruptions
to essential cellular processes such as transcription, translation and
growth-factor signalling?, with processes involved in mitochondrial
function, neuronal activity and DNA damage being dysregulated
in the ageing brain®*. Cell-type-specific changes during ageing are
obscuredinbulk analyses and are poorly understood. This represents
a major knowledge gap in the human brain, in which molecularly
distinct cell types perform specific functions throughout life. The
advent of single-cell genomics has allowed high-resolution analysis
of both DNA and RNA. scWGS and other techniques have shown that
somatic mutations accumulate in human neurons during ageing and
in age-related diseases, raising the possibility that such variants con-
tribute to transcriptional dysregulation and the concomitantincreased
susceptibility to dysfunction and disease that accompanies advanced
age’'°. Single-cell RNA sequencing and snRNA-seq have refined the
understanding of brain cell states™ ™, and have been used to identify
age-related and disease-related changes in several organs®, including
the human brain'®". Despite this progress, our understanding of the
transcriptional and genomic changes associated with healthy ageing—
which might lay the groundwork for certain brain diseases—remains
incomplete.

Here, to begin to capture the dynamics of human brain ageingina
cell-type-specific manner, we generated droplet-based snRNA-seq and
scWGS libraries of fresh-frozen human prefrontal cortex (PFC) (Fig. 1a)
from19 neurotypical donors ranging in age frominfant to centenarian

(Table1and Supplementary Table 1). As orthogonal validation of our
snRNA-seqresults, we performed multiplexed error-robust fluorescent
insitu hybridization (MERFISH), a quantitative spatial-transcriptomic
technique with single-molecule resolution, onasubset of donors. Inthe
snRNA-seq experiments, 367,317 nuclei remained after quality control
and artefact filtering'®, with amean of 19,332 per donor (Supplementary
Fig.1),and dimensionality reduction and hierarchical clustering yielded
31clusters (Fig.1b). We annotated these clusters using a previously pub-
lished human PFC dataset as areference (Fig. 1c and Supplementary
Table 2), and identified clusters of excitatory neurons from various
cortical layers, four subtypes of inhibitory neurons (IN-PV, IN-SST,
IN-SV2C and IN-VIP), microglia, oligodendrocytes, oligodendrocyte
precursor cells (OPCs), astrocytes and endothelial cells. The expres-
sion of canonical marker genes for each cell type was cluster-specific
(Supplementary Fig. 2). Within these broad classes, we identified sub-
classes of cellsthat, despite their similarity, populated distinct clusters
(Fig.1b). Onaverage, excitatory neurons expressed more than twice as
many genes as did glial and endothelial cells (Fig. 1d).

Brain cell-type proportions during life

We detected no difference in the overall ratios of neurons to glia or
excitatory neurons to inhibitory neurons. In addition, we did not
observe the loss of any neuron subtype during non-pathological age-
ing, nor did we see evidence of the expansion of reactive microgliainthe
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Fig.1|Study design and characterization of droplet-based snRNA-seqin
humanPFC. a, Overall study design. Human PFC was analysed by three single-
cellgenomictechniquesin parallel. b, Dimensional reduction and clustering
of allsnRNA-seq nuclei after filtration yielded several clusters for each cell
type (Ast, astrocyte; CC, cortico-cortico; Endo, endothelial; L, layer; Oli,
oligodendrocyte; UMAP, uniform manifold approximation and projection).
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Table 1| Sample information for snRNA-seq and scWGS

Group Age Sex Nuclei Segmented cells
(vears) snRNA-seq scWGS  MERFISH
Infant 0.4 M 23,091 7 26,036°
0.6 M 18,399 9 -
Adult 15 F 29,317 7 58,3287
17 M 11,305 4 -
27 M 2817 5 34,850°
28 M 20,425 5 63,394°
38 M 21,135 4 -
42 F 36,921 7 21,162°
44 M 11,097 3 -
49 F 22,958 5 28,292°
53 M 9,268 3 -
57 M 20,751 7 73,406*
Elderly 66 F 14,746 5 -
70 F 8,710 3 -
82 M 28,888 7 12,760°
82 F 17,382 3 15,451°
87 M 14,351 4 1,802°
93 M 16,781 5 -
104 F 13,621 7 -
Total 19donors 12M,7F 367,317 100 345,481

Group, age and sex information for each donor brain. We report the numbers of unsorted
nuclei input for snRNA-seq and sorted NeuN* neuronal nuclei used for scWGS from each
brain, as well as the number of segmented cells derived from MERFISH when applicable.
Dorsolateral PFC was used for all experiments. °MERFISH samples prepared on the
MERSCOPE Ultra instrument; "MERFISH samples prepared on the MERSCOPE instrument.

elderly (aged >65years) brain (Extended Data Fig.1and Supplementary
Table 3). However, we did identify subclusters of neurons and astro-
cytes that were composed exclusively or nearly exclusively of nuclei
from infant donors (Fig. 2a). As a whole, the infant-specific neuron
cluster resembled L2/3 neurons, but closer examination identified
groups of cellsin this cluster expressing markers of L4 or L5/6 neurons
(Extended Data Fig. 2), and revealed that genes involved in development
and neuron migration (Fig. 2b), such as SL/T3 and ROBOI, were also
expressed in this group (Supplementary Tables 4 and 5). An analysis of
MERFISH datagenerated using the Ultra platform from a subset of four
donors (a0.4-year-old maleindividual, a15-year-old female individual,
a28-year-old maleindividual and a 57-year-old male individual) showed
thatinfant neurons mostly exhibited correct laminar positioning, with
CUX2'1.2/3 neurons, RORB' L4 neurons and HS3ST4" L5/6 neurons®
showing similar distributions across donors (Fig. 2¢,d and Extended
Data Fig. 3). HS35T4 also seems to mark white-matter neurons in all
donors, similar to TLE4, a canonical L5/6 marker?. These data sug-
gest that cluster L2/3-2 represents immature excitatory neurons that
populate the various layers of the infant neocortex. Infant-specific
astrocytes expressed neurodevelopmental genes that mark imma-
ture astrocytes; for example, HESS, ID4, MFGES and DCC (refs. 22-24)
(Fig.2b, Supplementary Tables 4 and 5). Our reanalysis of a published
snRNA-seq dataset of human PFC examining fetal development through
adulthood® confirmed the patterns of down- and upregulated genes
that we observed ininfant neurons and astrocytes (Extended DataFig. 4
and Supplementary Fig. 3).

The abundance of OPCs decreased during ageing (P=1.31x1072,
Wilcoxon rank-sum test), being highest ininfant donors and decreas-
ingover lifespan (Fig. 2e), whereas mature oligodendrocytesincreased
duringageingin the brain (P=1.31 x 102, Wilcoxon rank-sum test com-
paring infant with adult and elderly). These data suggest that the pool

of OPCs differentiates into mature oligodendrocytes during life with
incomplete replacement; thus, the capacity to generate new oligoden-
drocytes might diminish in elderly people.

Increased cell-to-cell transcriptional variability during ageing has
been identified in non-brain tissues? 2, and is thought to be a conse-
quence of ageing-related disruptions to the genome, epigenome and
transcriptome. In our data, we detected only one cell type—IN-SST
neurons—with a significant increase in the coefficient of variation in
the transcriptome in elderly brains (Fig. 2f; P=4.30 x 1072, Wilcoxon
rank-sumtest). We observed similar trends when analysing our cohort
in three age groups (15-39,40-69 and 70 and over; Supplementary
Fig.4).Furthermore, the expression of SSTand VIP, which are markers
of two distinct classes of inhibitory neurons, decreased significantly
with age (fold changes of —2.63 and -1.46; corrected P values < 2.2 x
107) in elderly IN-SST and IN-VIP cells, respectively (Fig. 2g). The
loss of these functionally important marker genes, combined with
increased transcriptional variability, suggests that inhibitory neu-
rons are changing in fundamental ways during ageing. A previous
report described a decrease in IN-SST and IN-VIP inhibitory neurons
during ageing in the human brain'. Although we did not detect this
phenomenon (Extended Data Fig. 1c,d), our data are consistent with
the notion that inhibitory signalling is compromised in the elderly
brain.

Housekeeping genes decrease in ageing

Differential expression analysis by cell type, comparing the 7 elderly
cases with the 10 adult cases, yielded 2,803 genes that changed signifi-
cantly with age (log,(elderly/adult) > 0.5, corrected P < 0.05) (Fig. 3aand
Supplementary Table 6). We obtained similar results when our cohort
wasbinned into three groups, or when using an alternate linear model
method (Extended DataFig.5and Supplementary Table 7). Reanalysis of
published data from control donors spanning 38-93 years of age?, and
fromacohortofelderly donors®, confirmed our results (Extended Data
Fig.5).Inevery cell type, more genes were downregulated during ageing
thanupregulated (Wilcoxon signed-rank test, P=2.44 x10™*), and most
downregulated genes were identified in neurons. L2/3 excitatory neu-
rons had the most up-and downregulated genes (201and 1,273 respec-
tively) of all cell types. A total of 124 genes that were downregulated
in ageing were commonly downregulated across multiple cell types
(Fig.3band Supplementary Table 8), reflecting anincrease relative to
random chance (P < 0.001, random permutation test). For example,
the heat-shock protein HSPAS, the cytoskeletal protein TUBA1A and
eightother genes were significantly downregulated inall 13 brain-cell
types during ageing. Other commonly downregulated genes across
cell typesincluded other cytoskeletal genes such as TUBB3 (down in
12/13 cell types), TUBA4A (10/13) and TUBB (9/13); the calmodulin genes
CALM2 and CALM3 (9/13 and 12/13, respectively); and the vesicle pro-
tein VAMP2 (13/13). By contrast, only two transcripts—the antisense
transcript of UBA6, a ubiquitin-modifying enzyme, and TMTCI, an
endoplasmic-reticulum proteininvolvedin calcium homeostasis—were
commonly upregulated in multiple types of neuron and glia.
Acommon feature seenacross cell typesin the ageing brainwas the
widespread downregulation of ‘housekeeping’ genes. Indeed, gene
ontology (GO) analysis of downregulated genes yielded common terms
acrossall celltypes except endothelial cells (Fig. 3c and Supplementary
Table9). Thisresult was robust to evenly down-sampling lists of differ-
entially expressed genes across cell types (Supplementary Table 10).In
non-endothelial cells, terms related to housekeeping functions such
as translation, metabolism, homeostasis, ribosomes, intracellular
localization and intracellular transport were significantly enriched in
the downregulated genes. To assess the expression changes of genes
with common cellular functions further and in an unbiased manner,
we defined a set of housekeeping genes in our dataset as those genes
that were stably expressed in all brain cell types (average log(counts
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Fig.2|Changesin the transcriptional state of brain cellsacross the human
lifespan. a, Clusters plotted by donor contribution as a percentage of total
cellsinthe cluster.L2/3-2 and Ast-3 are composed nearly completely of nuclei
frominfantdonors.b, GO terms derived from differentially expressed genes
upregulated ininfant-specific clusters plotted as general categories (see
Supplementary Table 5 for a full list of terms and category designations).
Development-related terms (shades of green) are most common. ¢,d, MERFISH
section froma 0.4-year-old male donor (c) and a15-year-old female donor (d),
showing correctlaminar positioning. Circles correspond to excitatory neurons
and are coloured according to marker-gene expression (red, CUX2 (L2/3);
green, RORB (L4); blue, HS35T4 (L5/6); yellow, CUX2 and RORB co-expression;

per million (CPM)) > 0.1in each cell type and with differences of less
than O.1between cell types), including endothelial cells and microglia
that derive from a distinct embryological origin from that of neurons
and other glia (Supplementary Table 11), and measured their changesin
expression during ageing (Supplementary Fig. 5a). By the same logic, we

660 | Nature | Vol 646 | 16 October 2025

teal, RORB and HS3ST4 co-expression). x- and y-axis values reflect pixel
positions e, Contribution of OPCs (top) and oligodendrocytes (bottom) to the
total nucleiidentified ineach donor (*P < 0.05).f, Transcriptional variability
inIN-SST neurons. Variability significantly increasesin neurons fromelderly
donors. Box plots depict median and first and third quartiles. Whiskers show
1.5times theinterquartile range (IQR) beyond the first and third quartiles
(P=4.30x107, two-sided Wilcoxon rank-sum test; elderly n=7,adultn=9).
g, Log,(elderly/adult) fold change plotted for each marker gene. Dot size
corresponds to expressionineach celltype. Dots circled in black have
statistically significant fold changes, meeting our criteria for differential
expression.

defined neuron-specific genes as those detected in all neuron subtypes
butabsentinnon-neuronal cells (Supplementary Table 11). Expression
of these housekeeping genes decreased in elderly relative to adult neu-
rons across subtypes (Fig. 3d). By contrast, neuron-specific genes did
notdecrease in neurons during ageing (Supplementary Fig. 5b). Thus,
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or more non-neuronal celltypes).c, GO terms of genes downregulated in ageing
plotted as general categories (see Supplementary Table 8 for full GO results).
Housekeeping functions (shades of blue) are commonly downregulated.
d,Housekeeping genes are significantly downregulated in elderly relative to
adultbrainsinallneurontypes. Boxes show median, firstand third quartiles.
Whiskersshow1.5 x IQR beyond the first and third quartiles (****P < 0.0001and
fold change <-0.05, two-sided Wilcoxonrank-sumtest; elderlyn=7,adultn=9).
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e, Meangene effect score for all of the downregulated (blue) and upregulated
(red) genes (inelderly versus adult donors) in the DepMap database.

The downregulated genes for both neurons (left) and microglia (right) are
more essential than the upregulated genes (two-sided ¢-test; neurons down
n=1,954,neurons up n =455, microgliadown n =149, microgliaup n=75; neurons
“p=7 33 x107, microglia****P=9.09 x 107). Boxes and whiskers asind. Points
beyond whiskers are outliers.f,g, Fold change in elderly versus adult ribosomal-
protein genes from both the small and the large subunit by snRNA-seq (two-sided
t-test; elderly n=7,adult n="9) (f) and MERFISH (two-sided Wilcoxon rank-sum
test; elderly n=3,adultn=3) (g).Inb, inhibitory. Genes showninbothfand gare
colour-coded. Boxes and whiskers asine.h, Expression ofimmediate early
genesinexcitatory neurons decreases with age. Grey shading, 95% confidence
intervals. All data points shown (*P < 0.05,**P< 0.01, ***P< 0.001).
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neurons lose the expression of genes related to general cell function,
but maintain cell identity in the ageing brain.

The DepMap database scores gene essentiality on the basis of survival
rates after knockout in hundreds of cancer cell lines. Using DepMap,
we found that genes that were downregulated with age in neurons and
microglia were more often essential for cell survival than were genes
thatwere upregulated (neurons: P=7.33 x 107; microglia: P=9.09 x 107,
two-sided t-test) (Fig. 3e and Supplementary Table 11), suggesting that
genes that are downregulated in ageing reduce brain-cell viability.

RPS3A, RPL26 and RPL15 (all encoding ribosomal proteins) were
significantly downregulated during ageing in 11 out of 13 cell types
(Supplementary Table 8), and 14 other ribosomal-protein genes were
commonly downregulated. This prompted us to examine the expres-
sion level of all ribosomal genes. We observed a near-universal trend
of adecrease in the expression of genes encoding the small and large
ribosomal subunits during ageing—much more than would be expected
by chance (Pvalues < 3.76 x 10°%; Fisher’s exact test) (Fig. 3f and Sup-
plementary Fig. 6). To validate this finding, we performed MERFISH
experimentsonthreeelderly brains (82 years (male), 82 years (female)
and 87 years (male)) and three adult brains (28 years (male), 42 years
(female) and 49 years (female)). Our results showed that across cell
types, the expression of nine ribosomal proteins decreased in elderly
brains, with significant decreases in all but OPCs (Fig. 3g, Extended
Data Fig. 6 and Supplementary Table 11). Nuclear-encoded proteins
of the mitochondrial electron transport chain, except for complex I
genes, also showed coordinated downregulation by both snRNA-seq
and MERFISH (Extended Data Fig. 6d,e and Supplementary Fig. 7).
Analysis of our snRNA-seq cohort in three age groups instead of two
indicates thatbothribosomaland mitochondrial genes decrease signifi-
cantly after the age of 40 years, with donors aged 40-69 years showing
similar expression of these genes to that of donors aged 70-104 years
(Extended Data Fig. 7). These data suggest that neurons become less
metabolically active during life. Along these lines, the expression of
immediate early genes, which are activated rapidly during neuronal
stimulation®, decreases during brain ageing (Fig. 3h).

Mutation patternsreflect transcription

Somatic mutations accumulate in cells during life for many cell types
throughout the humanbody®***, including in post-mitotic neurons of
the humanbrain®®°. Neuronal rates of somatic mutation correlate with
transcription as measured by bulk RNA-seq in the brain®”°, suggesting
thatsomatic mutations can affectimportant brain gene-regulatory pro-
grams. Mutational signature analysis hasimplicated the activity of sev-
eral DNA-repair genes in generating somatic mutations in neurons®”'°,
Thus, both the upstream causes and downstream effects of single-cell
somatic mutations can be studied using single-cell gene expression.

To link changes in the neuronal transcriptome to changes in the
somatic mutation burden ofindividual neurons, we performed scWGS
using primary template-directed amplification (PTA)**® on neurons
from the same brain region and donors analysed by snRNA-seq (Sup-
plementary Table 12). We used the SCAN2 algorithm® to identify somatic
single-nucleotide variants (sSNVs) in scWGS data from each sample
(Supplementary Table 13). In agreement with previous reports®”, our
analysis suggested that sSSNVs accumulate at a rate of 15.1 per neuron
peryear (R*=0.87,P=2.20 x107'®) (Extended DataFig. 8a). The overall
pattern of mutations resembles aknown signature called SBS5 (cosine
similarity 0.96), firstidentified by the Catalogue Of Somatic Mutations
In Cancer (COSMIC) consortium, whichaccumulates during life across
many tissues® (Extended Data Fig. 8b,c).

We compared the changes in neuronal gene expression with the
age-related patterns of somatic mutation in neurons to investigate
the relationships between the genome and the transcriptome in age-
ing. We found that the overall, SBS5-like spectrum of neuron sSNVs
was composed of two distinct signatures, which we name Aland A2
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(Fig.4a, Supplementary Fig. 8 and Extended Data Fig. 8c). Signature A1
resembled SBS5 (cosine similarity 0.88), and correlated strongly with
theage of the donor (R*=0.88, P=3.30 x 107°) (Fig. 4b), accounting for
12.1of the 15.1 mutations per year. The burden of signature Al also cor-
related strongly with neuronal gene-expression levels (Fig. 4c and Sup-
plementary Fig. 8; chi-squared test), demonstrating that transcription
inneurons sensitizes some loci to specific types of somatic mutation.
Inline with this, significant transcriptional strand bias in sSSNVs, which
is thought to result from asymmetrical damage and repair rates on
template and non-template strands at transcribed loci*®, was observed
inmedium to highly expressed genes but notingenes expressed atlow
levels (Fig. 4d; asterisks denote significant deviations from 50:50).
Furthermore, signature Al was enriched in active chromatin states in
the human brain at active transcription start sites (TSSs), enhancers,
bivalent TSSs and weakly repressed polycomb sites, but depleted at
quiescent and weakly transcribed loci (Fig. 4g and Supplementary
Table 14; chi-squared test).

Signature A2 accounted for fewer age-related mutations per year
(3; R”?=0.42, P=6.60 x10™), and most sSNVs in infant neurons were
derived fromsignature A2 (Fig. 4b,e and Supplementary Table 13). Sig-
nature A2 showed high similarity to developmental mosaic mutations
identified in three separate studies that used orthogonal methods to
scWGS** (cosine similarity 0.77,0.81and 0.83; Extended DataFig. 9a).
The sSNVsidentified in ourinfant donors were also similar to those con-
firmed developmental mosaics (cosine similarity 0.82,0.85and 0.88,
Extended DataFig. 9a). Signature A2 clustered with COSMIC signature
SBS30 (cosine similarity 0.82) (Extended Data Fig. 8c). Signature A2
mutation rates anticorrelate with neuron gene-expression levels and
are enriched inintergenic regions (Fig. 4f), in agreement with trends
observed for SBS30 (COSMIC database). Inaccordance withits enrich-
ment in genes expressed at low levels, signature A2 is enriched in the
humanbrainin chromatin states found at sites of weak transcription,
and is depleted at repressed and weakly repressed polycomb sites
(Fig. 4h and Supplementary Table 14; chi-squared test).

Nevertheless, signature A2 differs from SBS30 in some key ways.
SBS30 comprises C>T variants almost exclusively, and these variants
aredepleted at CpG dinucleotides (Extended Data Fig. 9c). By contrast,
signature A2 contains substitutions in addition to C>T, such as C>A,
whichwe previously linked toincreased oxidative DNA damage during
ageing, and T>C, which increases with age”®. Similarly to confirmed
developmental clonal mosaic mutations identified in other studies
using non-scWGS methods®*, signature A2 shows contributions of
SBS1and SBSS5 in addition to SBS30 (Extended Data Fig. 9b). Signa-
ture A2 shows higher CpG>TpG variants than does SBS30, suggesting
that deamination of methylated cytosines has a role in the genesis of
signature A2, as it does in confirmed mosaics (Extended Data Fig. 9c).
A high burden of C>T at CpG dinucleotides distinguishes biological
from technical mutational signatures in single-cell genomics™*2.

Thedifferences observed between signatures Aland A2 with respect
to their rate of accumulation per year, their differential correlation
with neuron gene expression, their distinct relative burden in genic
versus non-genic regions and their differential correlation with brain
chromatin states support the notion that these signatures represent
biologically distinct components of the overall, SBS5-like mutation
spectrum observed in single human neurons. Signature Al is the pre-
dominant source of age-related SNVs in neurons and correlates with
neurongene expression, confirming that transcriptiondirectly deter-
mines the neuronal sSNV rate. Signature A2 seems to be more active
indevelopment and early life, but signature A2 mutations continue to
accumulate during ageing, at transcriptionally inactive loci.

Genelength, transcription and mutation in ageing

Somatic mutations arise from DNA damage that occurs through a vari-
ety of mechanisms. Long genes are downregulated in ageing across
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Fig.4|scWGSreveals sSSNV mutational signatures linked to expression.

a, Denovo mutational signature analysis of sSSNVs in human neurons revealed
two signatures: Aldominated by T>C mutations and A2 dominated by C>T
mutations. Trinucleotide contexts are the same as shown in Extended Data
Fig.6¢.b, Number of signature A1sSNVsin each neuron plotted by age. Signature
Alstrongly correlates withage (R*=0.88,P=3.30 x10~°°) withan extrapolated
mutationrate of12.1SNVs per year.c,sSNV enrichment of signature Alin coding
regions plotted by neuron expression quantile (left) and genic versus intergenic
regions (right). Signature Alis enriched in the highest-expressed genes and
genicregions (chi-squared test).d, Percentage of total sSSNVs derived from the
transcribed strand broken down by expression quantile. T>C and C>T strand
biasincreases with expression (chi-squared test; *multiple-testing-corrected
false discoveryrate (FDR) <0.05; **multiple-testing-corrected FDR < 0.01).

e, Number of signature A2 sSNVsin each neuron plotted by age. Signature A2

many organs—an effect that is attributed to their naturally increased
likelihood of acquiring transcription-blocking DNA damage owing to
random chance**, We find that sSNV rates correlate with neuronal

correlateswithage (R*=0.42, P=6.60 x 10¥) with an extrapolated mutation
rate of 3SNVs per year. f, sSSNV enrichment of signature A2 in coding regions
plotted by neuron expression quantile (left) and genic versusintergenic
regions (right). Signature A2 is depleted in the highest-expressed genes and
enrichedinthelowest-expressed genes as well asintergenicregions (*P<0.05,
chi-squared test). g,h, Mutation enrichment in human brain chromatin
states for signature A1(g) and signature A2 (h) (chi-squared test; *P < 0.05,
***P<0.001,****P<0.0001). TssA, active TSS; TssAFInk, flanking active TSS;
TxFInk, transcription at gene 5 and 3’; Tx, strong transcription; TxWk, weak
transcription; EnhG, genic enhancers; Enh, enhancers; ZNF/Rpts, ZNF genes
andrepeats; Het, heterochromatin; TssBiv, bivalent or poised TSS; BivFInk,
flanking bivalent TSS or enhancer; EnhBiv, bivalent enhancer; ReprPC,
repressed polycomb; ReprPCWk, weak repressed polycomb; Quies, quiescent
or low expression.

geneexpression®” (Fig. 4c), suggesting that transcription and DNA dam-

agearelinked. How gene length and expression level relate to transcrip-
tional changesin ageing, and whether differences in somatic mutation
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patterns based on gene size or transcription correlate age-associated
changes, are unknown.

To investigate the effects of gene length and expression level on
transcriptional changes in ageing, we performed a multiple linear
regression analysis. We found that high basal expression predicts
decreased expression in aged donors (Fig. 5a, Supplementary Fig. 9a
and Supplementary Table 15). We confirmed this relationship using
bulk brain expression datafrom the GTEx consortium. However, amore
robust effect was observed for gene size. There was a positive correla-
tionbetweengene length and expressioninelderly neurons compared
with adult neurons. In other words, longer genes are more likely to
maintain orincrease their expression during ageing, and, unlike in other
organs, downregulated genes in neurons are more likely to be short.
A significant but lower magnitude effect was also observed for exon
length and expression, suggesting that this effect was driven mostly
by gene length, not transcript length. This length effect was stronger
in excitatory and inhibitory neurons (R =0.59 and 0.57, respectively)
thanin glia (average R = 0.35), and downregulated genes in neurons
were shorter than those in glia (Fig. 5b), highlighting a cell-type-specific
effect. Although in opposition to the relationship observed in many
tissues, our data agree with data from the mouse frontal cortex* and
bulk-sorted retinal ganglion cells, in which long gene expression is
preserved during ageing®.

Alarger percentage of neurons than non-neurons expresses the
topoisomerases TOPI and TOP2B, and the topoisomerase interactors
PARP1, TDP1and BTBD1(P=8.17 x 107%; Wilcoxon rank-sum test) (Fig. 5¢).
Neurons rely ontopoisomerase activity to mitigate the torsional stress
generated when unwinding neuronal genes during transcription*®,
which tend to be longer than broadly expressed housekeeping genes*’
(Fig.5d), suggesting that high topoisomerase expression protects long
genesinneurons.

Our multiplelinear regression model results arein general agreement
with the results from GO analysis that suggested that housekeeping
genes are downregulated in ageing (Fig. 3¢c), because housekeeping
genes are generally short (Fig. 5d) and highly expressed*®° (Fig. 5e
and Supplementary Fig. 9b,c).

Our combined single-cell genomic and transcriptomic dataset
allowed us to probe the relationship between gene size, genome dam-
age and age-related expression changesin depth at the single-neuron
level. Because gene length and gene function are related in the brain
(neuronal genestend to belong), we separately analysed the relation-
ship between gene length and expression change during excitatory
neuron ageing in neuron-specific genes and housekeeping genes.
Housekeeping genes showed a positive correlation between gene
length and expression change in ageing (R?=0.50, P=1.35x 107%)
(Fig. 5fand Supplementary Fig.10), such that the shortest genes were
the most downregulated, whereas the longest showed no change or
slightlyincreased inaged cells. This pattern resembled the downregu-
lation of short genes observed in the overall transcriptome (Fig. 5b).
However, across neuron-specific genes, there was a significantly
weaker relationship (Fisher’s r-to-z transformation, P=2.08 x 10™)
between gene length and expression change in aged brains (R*=0.20,
P=1.24 x107®) (Fig. 5g and Supplementary Fig. 11). These conclusions
were validated by analyses of previously published datasets and by
analysis of our data using different groupings or using a linear model
method (Extended Data Fig. 10). MERFISH analysis of 33 short house-
keeping genes, 33 long housekeeping genes, 24 short neuron-specific
genes and 21long neuron-specific genes confirmed the downregulation
of short housekeeping genesinsamples fromelderly donorsrelative to
samples fromadult donors (P=3.4 x 1075, Wilcoxon rank-sum test), and
did not identify any significant changes in long housekeeping genes
or neuron-specific genes of either size (Fig. 5h).

Within gene classes, the sSNV rate mirrored changes in expression
during ageing; in housekeeping genes, the SSNV rate decreased as gene
lengthincreased (R*=0.44, P =3.52 x1072) (Fig. 5iand Supplementary
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Table 16), whereas in neuron-specific genes there was no significant
relationship between gene length and SNV rate (R?=0.02, P=0.706)
(Fig. 5j and Supplementary Table 16). These data suggest that there
are distinct patterns of DNA damage and repair in housekeeping and
neuron-specific genes (Fig. 5k). Thus, gene length, gene function and
genome damage combinatorially affect the transcriptome of the age-
ingbrain.

Discussion

Here we used snRNA-seq, scWGS and spatial transcriptomics to study
genomic and transcriptomic changes in the brain during life. We con-
clude that short, highly expressed housekeeping genes show highrates
of sSNV accumulation during life that correlate with reduced expres-
sion. Several lines of evidence lead us to this conclusion. First, house-
keeping functions were the most commonly enriched GO terms for
downregulated genes, dominating the neuronsin particular, whereas
neuron-specific genes remained flat during ageing in general, with no
significant changes in expression. Second, housekeeping genes were
short and highly expressed, in agreement with previous literature.
Third, sSNVratesin neurons correlated with neuron gene-expression
levels. Indeed, the shortest housekeeping genes, which showed high
levels of expression, showed the highest sSSNV rates. Finally, amultiple
linear regression model showed that high expression correlated with
the likelihood of transcriptional downregulation in ageing, and that
long gene length correlated with the maintenance or an increase of
transcript levelsin ageing. The relationship between gene length and
the ageing transcriptome has been a point of curiosity in the field, but
thus far, this association has varied across tissues**, Our analysis sug-
geststhatinneurons, long genes related to cellidentity are preserved
in ageing, whereas short housekeeping genes accumulate somatic
mutations and decrease in abundance during life.

Several mechanisms could explain this relationship. First, mutations
might directly generate premature stop codons or change patterns
of RNA splicing, inducing nonsense-mediated decay of mutant tran-
scripts. Second, aberrant DNA-repair processesinvolved in generating
somatic mutations cause local epigenetic dysregulation®, affect-
ing transcript levels. Third, differential repair of housekeeping and
neuron-specific genes could have arole in differential sSSNV burdens.
Recently, single-stranded DNA lesions were shown to endure for long
periods of time—up to years—in human cells, in the absence of active
DNA repair®. sSNV rates might be high in short, highly expressed genes
because they show preferential transcription-coupled DNA repair®,
meaning that DNA damage that occurs during transcription®® might be
efficiently made into permanent, double-stranded mutations owing to
repair errors. Neurons might differ from cells in other organs because
of their post-mitotic nature, or owing to the high expression of topoi-
somerase genes, which protect long genes.

Our work also defined other changes in the human brain during
healthylife. Inthe infant brain, we identified populations ofimmature
neurons and astrocytes, and an increased ratio of oligodendrocyte
precursors to mature oligodendrocytes, in support of the notion that
brain-cell development continues after birth. Inagreement with previ-
ous work, scWGS showed that sSSNVs with an overall spectrum resem-
bling COSMIC SBS5 increased in ageing neurons. De novo signature
analysisrevealed two signatures, Aland A2, dominated by T>Cand C>T
transitions, respectively, that clustered with known somatic mutational
signatures in cancer, SBS5 and SBS30, respectively. The aetiology of
SBS5is unknown, but it has been reported to behave in aclock-like man-
nerinbrainand other tissues®®*>¥, Signature A2 somewhat resembles
SBS30 and contains C>A and T>C variants—mutation types that are
linked with oxidative DNA damage and ageing, respectively. SBS30
has been linked with®” decreased activity of the base excision repair
protein NTHL1, and our previous work linked neuron C>A variants to
the base excision repair protein OGG1. Our snRNA-seq data revealed
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level, gene type and sSNV burden. a, Mixed-effects linear model identifying
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R*=0.54). Gene and exon length positively correlated with ageing-related
fold change (FC) in expression. Length-normalized expressionin excitatory
neurons and frontal cortex expression (GTEx database) negatively correlated
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determined by two-sided t-test. b, Density plots of the length of downregulated
genes (solid lines) and all expressed genes (dashed lines) for each cell type.
Meanlengths for downregulated genes are shown; asterisks denote significant
differences from the mean neuronal downregulated length (two-sided t-test).
¢, Expression of topoisomerase complex genes across cell types. Asterisks
denotesignificant differencesinthe percentage of cells expressing between
neurons and non-neurons (two-sided Wilcoxon rank-sum test). d, Housekeeping
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that both NTHLIand OGGI were expressed in neurons, and that this
expression was dynamic during ageing, but further studies are needed
to link these changes to signature A2. We note that, despite the high
similarity between signature A2 and SBS30, A2 in neurons is distin-
guished from this tumour signature by higher levels of C>T at CpG
dinucleotides. Signature Al was enriched in coding regions, highly
expressed genes and known open chromatinsites, whereas A2 showed
the opposite pattern, being enriched in non-coding regions, highest
inrepressed genes and enriched in loci bearing repressive chromatin
marks.

Asthe application of scWGS technologies expands toinclude other
cell typesin the brain, it will become possible to further elucidate the
relationship between somatic mutations and gene expression during
ageing. This will increase researchers’ understanding of the genomic
and transcriptomic landscape in the ageing brain.
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Methods

Tissue procurement

Alltissue was provided by the National Institutes of Health (NIH) Neu-
roBioBank and Banner Sun Health Research Institute Brain and Body
Donation Program, which obtained written authorization and informed
consent for all donors. Tissue collection and distribution for research
purposes were done in accordance with protocols approved by the
NIH NeuroBioBank (IRB protocol number: HM-HP-00042077) or the
Human Brain and Spinal Fluid Resource Center (managed by the Sepul-
vedaResearch Corporation; IRB protocol number: PCC: 2015-060672,
VA project number: 0002) and by the Banner Sun Health Research
Institute Brain and Body Donation Program (WCG IRB protocol num-
ber20120821). Tissue was collected from post-mortem, de-identified
donors and thus this workis not considered by our Institutional Review
Board to be research using human subjects. Cases were selected on
the basis of RNA quality, age at time of death and absence of a history
of neurological disease or evidence of neuropathology in the tissue.
Brodmann area 9 or adjacent Brodmann area 46 of PFC was provided
for each donor and used for both snRNA-seq and scWGS. To obtain
the donor reference genomes, bulk DNA samples were collected from
donor-matched tissues, whichincluded heart, liver, muscle, cerebellum
or cortex. Bulk DNA whole-genome sequencing (WGS) data for donors
1278, 4638, 1465, 4643, 5657 and 5817 (0.4-year-old male, 15-year-old
female, 17-year-old male, 42-year-old female, 82-year-old male and
0.6-year-old maleindividuals, respectively) were obtained from previ-
ousstudies®*®, along with bulk DNA WGS data for donor 5572 (70-year-
old female individual)’.

Isolation of nuclei from fresh-frozen tissue samples
Thenucleiisolation protocol was adapted from two previous publica-
tions**®°, All procedures were performed onice or at 4 °C. Fresh-frozen
samples were processed using a 7-ml glass Dounce homogenizer with
approximately 20 mg tissuein5 ml of filter-sterilized tissue lysis buffer
(0.32 M sucrose, 5 mM CacCl,, 3 mM MgAc,, 0.1 mM EDTA, 10 mM Tris-
HCI(pH 8), 0.1% Triton X-100 and 1 mM fresh DTT). The homogenized
solutionwas loaded ontop of afilter-sterilized sucrose cushion (1.8 M
sucrose, 3 mM MgAc,,10 mM Tris-HCI (pH 8) and1 mM DTT) and spun
in an ultracentrifuge in an SW28 rotor (13,300 rpm, 2 h, 4 °C) to sepa-
rate nuclei.

Fornucleiisolated for snRNA-seq, after spinning, the supernatant was
removed and nuclei were resuspended (1% BSA in PBS plus 25 pl40 U pl™
RNAse inhibitor), then filtered through a 40-pum cell strainer. After
filtration, nuclei were counted using trypan blue and an automated
haemocytometer (CountessII; Invitrogen) and diluted to a concentra-
tion of 1,000 cells per pl.

For nucleiisolated for scWGS, the supernatant was removed and
nuclear pellets were resuspended in ice-cold resuspension buffer
(8.5 ml1x PBS with 3 mM MgCl, + 1 ml 1x PBS with 3 mM MgCl, and 1%
BSA + 500 pl sucrose cushion), filtered with a 40-pum cell strainer
and then stained with an anti-NeuN antibody (directly conjugated to
Alexa Fluor 488; Millipore MAB377X, clone A60; 1:1,250) and an anti-
rabbit IgG Alexa Fluor 647 antibody as a negative control for 30 min.
Using a BD Biosciences FACSAria Fusion machine and BD FACSDiva
Software, forward scatter A (FSC-A) was first used to isolate large
non-replicating cells. NeuN staining produced a bimodal signal dis-
tribution, distinguishing NeuN* and NeuN™ nuclei (Supplementary
Fig.13). Large neuronal nuclei, representing excitatory pyramidal
neurons, were further identified by collecting the nuclei with the
highest NeuN signal among the NeuN* neuronal fraction, and gat-
ing for the population with the highest FSC-A signal and excluding
Alexa-Fluor-647-high events’. This non-replicating high-FSC-A and
high-NeuN population was confirmed to be an excitatory neuron
population, comprising 2-5% of the total population of nucleiin each
sample’.

Droplet-based snRNA-seq

Droplet-based libraries were generated using the Next GEM Single
Cell3’v.3orv.3.1reagentKkits (10x Genomics) and the Chromium Con-
troller according to the manufacturer’s instructions. The resulting
libraries were indexed with the KAPA Unique Dual-Indexed Adapter
Kit (Roche KK8726) and sequenced onanllluminaNovaSeq 6000 with
150 paired-end reads by Genuity Science. Samples were prepared in
batches of up to six donors at a time that always included male and
female donors as well as mixed ages (Supplementary Table 3). To pre-
ventage or gender biasin our batches, some samples have multiple bio-
logical replicates, prepared on different dates. A single replicate each
fromthree distinct donors clustered abnormally during downstream
analysis and was therefore excluded from analysis. After filtering, the
only clusters exhibiting batch bias are those that are infant-specific
and biologically driven (Supplementary Fig. 1). Because those cells
were present only in infant donors, the only batches contributing to
those clusters are those that included an infant.

In addition to data generated for this manuscript, we also included
data that were previously published”: case 1465, a 17-year-old
male individual. Single nuclei from the PFC were isolated by
fluorescence-activated nuclear sorting using three gates (large NeuN"
nuclei, NeuN* nuclei and DAPI* nuclei) to generate three populations
(large neurons, neurons and all nuclei). For each population, 16,000
nuclei were sorted into one well of a 96-well plate, which were then
used to perform snRNA-seq using the Next GEM Single Cell 3’ GEM kit
v.3.1and the Chromium Controller (10x Genomics). The three resulting
libraries were indexed using the 10x Genomics Dual Index Plate and
sequenced on an lllumina NovaSeq S4. For our downstream differen-
tial expression analysis, all three populations were grouped together.
Donor 1465 was excluded from analyses of cell-type proportion because
the tissue had been subjected to fluorescence-activated cell sorting,
which skewed the cell-type ratios.

scWGS of neurons using PTA

Single neuronal nuclei, prepared as described above, were
whole-genome-amplified by PTA®*¢ using the ResolveDNA Whole
Genome Amplification kit (BioSkryb Genomics). First, nuclei were
sorted into cold 96-well plates pre-loaded with 3 pl cold cell buffer
(BioSkryb) one per well. Nuclei were lysed as per the kit protocol by
the addition of 3 pl MS mix, followed by a brief spin-down, then 1 min
of agitation at room temperature at 1,400 rpm on a plate mixer, then
10 minonice. Next, 3 pl SN1buffer was added to each well and the plate
was again spun down and agitated at 1,400 rpm for 1 min. Next, 3 pl
SDX buffer was added, and the plate was again spun and agitated at
1,400 rpmfor1min. Then, the plate was incubated at room temperature
for10 min. Next, reaction mix and enzyme were added to each well, for
atotal reaction volume of 20 pl per well. PTAwas performed for 10 h at
30 °C, followed by enzyme inactivation at 65 °C for 3 min. Amplified
DNAwas cleaned up using anin-house carboxyl magnetic bead clean-up
solution (0.024 MPEG-8000,1 MNaCl,1 mMEDTA, 10 mM Tris-HCI pH
8,0.055% Tween 20 and 1.5 ml Cytiva Sera-Mag SpeedBeads Carboxyl
Magnetic Beads, hydrophobic per 50 ml). DNA yield was determined
using the QuantiFluor dsDNA System (Promega). Samples were sub-
jected to quality control by multiplex PCR for four genomic loci on
different chromosomes as previously described®. Amplified genomes
showing positive amplification for all four multiplex PCR loci were
prepared for lllumina sequencing.

Librarieswere prepared following amodified KAPA HyperPlus Library
Preparation protocol described in the ResolveDNA EA Whole Genome
Amplification protocol. In brief, the fragmentation step was skipped
and end-repair and A-tailing were performed for 500 ng amplified
DNA input. Adapter ligation was then performed using the SeqCap
AdapterKit (Roche, 07141548001). Ligated DNA was cleaned up using
in-house beads and amplified through an on-bead PCR amplification
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step. Amplified libraries were selected for a size of 300-600 bp using
double-size selection. Libraries were subjected to in-house quality
controlusinga 5300 Fragment Analyzer Bioanalyzer for DNA fragment
size distribution (Agilent Technologies). Successfully prepped samples
were sent to Genuity Science for DNA sequencing, who further tested
for quality using TapeStation (Agilent Technologies) before process-
ing.Single-cell PTA-amplified genome libraries were sequenced on the
Illumina NovaSeq 6000 platform (150 bp x 2) at minimum 20x coverage
(Supplementary Table 12). scWGS of some neurons was performed at
Harvard for previous publications®” (Supplementary Table 12).

Bulk DNA isolation

Genomic DNA was isolated using the QIAGEN DNA Mini kit (QIAGEN
51304) according to the manufacturer’s protocol for tissues. Approx-
imately 25 mg of fresh-frozen tissue was minced on ice into small
still-frozen pieces. Tissue was transferred to a dry-ice chilled sterile
1.5 ml microcentrifuge tubes with 180 pl of buffer ATL. Then, 20 ul of
proteinase K (20 mg ml™) was added before 4 h of agitation at 56 °C
on a thermomixer (1,400 rpm). DNA isolation proceeded as written
in the protocol with the inclusion of the optional RNase A treatment
step. A small sample was sent for fragment analysing and gDNA qual-
ity assessment.

Bulk DNA library preparation and sequencing

Bulk DNA wasisolated as described above and libraries were prepared
following the KAPA HyperPlus library preparation protocol. The KAPA
fragmentation step was includedin the bulk processed gDNA samples.
BulkgDNA sample libraries were sent to Genuity Science and sequenced
onthe lllumina NovaSeq 6000 platform (150 bp x 2) at minimum 30x
coverage and used as a reference genome against the case-match
single-cell genomes. Bulk DNA for cases 1278, 4638, 4643, 5657 and
5817 was previously isolated and sequenced® on an lllumina HiSeq X
Ten platform by Macrogen Genomics or the New York Genome Center.

Analyses of snRNA-seq data

The snRNA-seqreads were aligned to the humangenome and assigned
to genes (GENCODE v.32) by Cell Ranger (v.6.0.2) with parameters
--expect-cells=10000 --include-introns=true (ref. 61). The barcode and
UMIsolved counts were further processed with Seurat®* (v.4.3.0). The
followingfiltering criteriawere applied to each sample and cell: more
than100 cellsinthe sample; reads from mitochondrially encoded genes
less than 5%; and more than 500 expressed genes in the cell. As dis-
cussed above, we further filtered samples ‘5817 200102’,'5288 200128’
and 5887 PFC 210601 owing to their batch-driven, not cell-type-driven,
clustering, removing them from downstream analysis. To minimize
false discovery and focus on universal changes in ageing, mitochondri-
ally encoded genes and genes in sex chromosomes were removed in
the downstream analysis. The filtered data were log-normalized with
afactor of 10,000. The top 8,000 variable features were selected for
principal componentanalysis (PCA), clustering and uniform manifold
approximation and projection (UMAP) analysis. The top 30 principal
components and 0.5 resolution were used for k-nearest neighbours
(KNN)-graph based clustering, yielding 39 clusters.

Each of the cells in this study was anchored to the cells from Velm-
eshev etal.”” using the RPCA method with the top 30 principal compo-
nents'*®>%%, For each of our 39 clusters, the percentages of cell types
according to Velmeshev et al. were calculated, and the dominant cell
types were used for each cluster. Those clusters with ambiguous cell
types according to Velmesheyv et al. were considered as artefacts and
removed from the downstream analysis. We further defined marker
genes for each cluster using the Seurat FindAlIMarkers function by
comparingeach cluster with the remaining clusters, requiring expres-
sionin at least 25% of the cluster and a log,-transformed fold change
greater than 0.25. For analyses in which excitatory neuron layer or
inhibitory neuronsubtype are not specified, layer- and subtype-specific

clusters were combined and analysed as a group. Specifically, all neu-
rons from the L2/3, L4, L5/6 and L5/6-CC clusters were combined into
anon-layer-specific group of excitatory neurons, and neurons from
the IN-SST, IN-SV2C, IN-PV and IN-VIP clusters were combined into a
non-subtype-specific group of inhibitory neurons. Finally, we validated
our cell-type assignment using the following marker genes (also shown
in Supplementary Fig. 2): CUX2 for L2/3 neurons; RORB for L4 neu-
rons; THEMIS for L5/6-CC neurons; TLE4for L5/6 neurons; VIP, PVALB,
SSTand SV2Cfor inhibitory neuron subtypes; OLIGI for oligodendro-
cytes; AQP4 for astrocytes; PDGFRA for OPCs; PTPRC for microglia;
and CLDNS for endothelia.

Weidentified changes in expression during ageing using the Seurat
FindAllMarkers function. In brief, a Wilcoxon rank-sum test followed
by multiple test adjustment was applied to determine significantly dif-
ferentially expressed genes (g < 0.05) between adult and elderly donors
foreachcelltype. We further filtered genes expressed in less than 25%
of elderly cells and adult cells, or with alog,-transformed fold change
lessthan 0.5. The same process was used to identify genes differentially
expressed between infant cells and adult cells.

Continuous method to validate changes in expression during
ageing

We used linear regression with sex as a covariate as an alternative
method to determine continuous changes in expression during age-
ing. Average log-normalized expression levels and the age (inyears) of
eachdonorwere used tobuild the linear model for each cell type. Genes
with aslopeless than—0.001 or greater than 0.001, a Pvalue less than
0.05 and expressed in at least 25% of adult or elderly cells were con-
sidered as continuously changed genes during ageing. Both methods
showed strong agreement on genes that go down during ageing across
celltypes, especially in excitatory neurons (Extended Data Fig. 5b and
Supplementary Table 7). The linear model generally identified more
genes that go up during ageing than the Wilcoxon test model, owing
to therelatively strict log,-transformed fold-change cut-off of 0.5.

Analysis of transcriptome change during ageing using three
groups

We investigated the transcriptome changes during ageing in a more
continuous way, by dividing our non-infant donorsinto three groups:
young adult (5 donors; under 40 years old); adult (6 donors; 40-69
years old); and elderly (6 donors; 70 years old or over). As shown in
Extended Data Figs. 5a, 7a,e and 10a,b, the results generally matched
our conclusions using the two-group comparison (elderly versus adult).

Transcriptional variability during ageing

Transcription variability is calculated by the coefficient of variation
(CV). Specifically, for each gene in a specific cell type and a specific
donor, the normalized expression levels (CPM) of all cells are used to
calculate the CV, defined by the ratio of standard variation to the mean.
The average CV of all genes is defined as the CV for a specific cell type
withina particular donor. Comparingelderly and adult donors using a
Wilcoxon rank-sum test showed asignificantincrease intranscriptional
variability for IN-SST neurons but not for any other cell type.

Infant-specific analysis
Toidentify infant-specific changesin gene expression, we performed
differential expression testing using the Seurat FindAlIMarkers func-
tionas described above, comparing the infant-specific clusters (L2/3-2
and Ast-3) with the other non-infant-specific clusters of the respective
cell type. The infant-specific upregulated genes, those with higher
expression in the infant-specific cluster relative to the other clusters,
were used for GO analysis (described below).

To determine changes in cell-type proportion, we used a Wilcoxon
rank-sum test comparing the proportion of each cell typeininfants to
the remaining samples (adult and elderly). Donor 1465 (a 17-year-old



male individual) was excluded from this analysis owing to the differ-
ences in nuclei preparation before snRNA-seq discussed above.

GO analysis

GO analysis of biological processes was performed on the differentially
expressed genes for each cell type, both up and downregulated, using
the R package gprofiler2 (v.0.2.3) with the correction method set to
‘fdr’and source setto ‘GO:BP’ from the GO database. For each cell type,
we used the active genes as the background gene set (indicated in the
Supplementary Tables as control genes). Active genes were defined as
those expressed in more than 25% of the cells to be consistent with the
definition of a differentially expressed gene. Determination of the GO
term categories shown in Figs. 2b and 3c was done manually (see Sup-
plementary Tables 5 and 9 for mappings). To confirm the distinct GO
enrichment profile inendothelial cells, we repeated the analysis after
down-sampling. For each non-endothelial cell type, we chose the top
121 downregulated genes in elderly donors with the lowest FDR (121
matches the number of downregulated genesin the endothelial cells).
There were fewer than 121 downregulated genesin oligodendrocytes,
and thus down-sampling was not performed for this cell type. The GO
down-sampling results are reported in Supplementary Table 10.

Random permutation test for shared downregulated genesin
celltypesfrom elderly donors

Totest whether there are significantly more genes downregulatedin at
least one excitatory neuron, at least oneinhibitory neuron and at least
two glial cell types than expected, we performed a random permuta-
tion test. We randomly picked the same number of expressed genes
to designate as downregulated for each cell type, using a minimum
expression cut-off of 25% of the adult cellsand 20% of the elderly cells,
andrecorded the number of shared genes as the expected value. A total
of 1,000 permutations were performed, and all of the tests yielded
fewer shared genes than observed in our data, generating a P value of
less than 0.001.

Identification of SSNVs in neurons

To identify sSSNVs, we used both scWGS and corresponding bulk WGS
data. scWGS and bulk WGS data were first processed accordingly to
the GATK (v.4.1.8.1) best practices®. In brief, reads were aligned to the
humangenome using bwa-mem (v.0.7.12) with default parameters. PCR
duplicates were thenfiltered using Picard, and the remaining reads were
recalibrated with GATK BaseRecalibrator and ApplyBQSR. Genotypes
were thenidentified with GATK HaplotypeCaller and GenotypeGVCFs.
Finally, sSSNVs were identified by comparing the scWGS data with cor-
responding WGS data from bulk tissues using SCAN2 with the following
parameters: --snv-min-sc-dp 5 --snv-min-bulk-dp 10°. Common SNPs
from dbSNP (v.20180418) and phasing information from the 1000
Genomes Project (v.3) were used as areference panel while running the
SCAN2 pipeline. We estimated the FDR for SCAN2 as 8.6% ina previous
publication®.

Signature analysis of SSNVs

We performed signature analysis for sSSNVs using the R package Muta-
tionalPatterns (v.3.16.0)%. We first calculated the spectrum of sSSNVs
in the 96-trinucleotide contexts for each neuron from all donors. A
non-negative matrix factorization (NMF) was applied to the spectrum
of sSNVs and the signatures were identified. After applying various
numbers of signatures in the practice, ranging from one to eight, we
found that two signatures yielded the best performance withregard to
stability and reconstruction errors (Supplementary Fig.12). The signa-
tures (Aland A2) were then compared with the COSMIC v.3 signatures,
and cosine similarities between signatures were calculated. To confirm
thereproducibility of our signature analysis, asecond method, Signa-
tureAnalyzer, was used with default parameters. SignatureAnalyzer
identified similar signatures to thoseidentified by MutationalPatterns.

Enrichment and strand bias of sSSNVs in genic features and
chromatin states

To calculate the enrichment of sSSNVsin genes and intergenic regions,
we first simulated random controls with the same mutation spectrumas
sSNVs restricted to suitable regions (that is, with enough depth) in our
scWGS and bulk WGS dataset. The numbers of sSSNVs and random con-
trols at genes and intergenic regions were then calculated. NMF, using
the R package MutationalPatterns, was further applied to sSNVs and ran-
dom controls at genes and intergenic regions to trace the contribution
of signatures Aland A2. Genes were divided into five groups according
totheir transcriptional activity (CPM) in neurons and glia cells from our
snRNA-seqdata. The same enrichment analysis was also done over the
15 chromatin states in the human dorsolateral PFC from Roadmap®.
To test for strand bias in sSSNVs, we used the UCSC table browser to
identify all RefGene transcripts associated with single-neuron sSNVs.
Only sSNVs that had known transcripts all going in the same direction
were considered. Transcriptional directions for sSSNVs that overlapped
atranscript weretallied, and the numbers collapsed toreport only one
complement of each base pair (T>A, T>C, T>G, C>A, C>T and C>Q).

DepMap analyses of the effects of upregulated and
downregulated genes on cell viability

Therequirement of each gene in overall cell viability was determined
using the Cancer Dependency Map (DepMap; version Public 22Q4),
which provides the cell viability effect of each gene knockout across
1,078 cancer cell lines of varying origin®. Specifically, cell viability is
determined by performing whole-genome pooled CRISPR screening
across each cell line, and on the basis of the fold change in the abun-
dance of cells containing Cas9 and guides against each specific gene.
Forexample, if cells transduced with Cas9 and guides against a particu-
lar gene were depleted after the screen, this would indicate an essential
gene. The overall effect of gene knockout for agiven cell line is quanti-
fied using a cell population dynamics model called Chronos®®, which
incorporates the efficacy of each guide and copy number correction
(CRISPR toxicity unrelated to gene function can occur when high copy
numbers are subjected to CRISPR-mediated strand breaks) to provide
anoverall ‘gene effect score’ that indicates the probability that agiven
celllineis dependent on the gene for survival®. Notably, a value of -1.0
corresponds to the median gene effect score of all common essential
genes, whereas a cell line is considered dependent if the gene effect
score is < —0.5. Positive values would indicate increased cell viability
or proliferation after loss of the gene.

Among the upregulated and downregulated ‘hits’ from the
snRNA-seq, those encoding long non-coding RNAs, non-coding RNAs
or pseudogenes are not covered in the DepMap essentiality analyses
and thus were not analysed for effects on gene viability. Likewise, sev-
eral coding genes (CECR, NEFL,FTH1, COX411,SH3RF3, BMP2K, SHISAS,
MYRFL and RPS3A) did not have CRISPR screen data yet available, and
were not analysed.

Defining housekeeping and neuron-specific genes

We first calculated the average logged CPMs for each gene in excita-
tory neurons, inhibitory neurons, microglia and endothelia. Then we
defined housekeeping genes as genes with a difference of less than 0.1
betweenthe four celltypes that also had anaverage logged CPM greater
than 0.1in each cell type. The genes that fit these criteria also have an
average logged CPM greater than 0.1in oligodendrocytes, OPCs and
astrocytes. The neuron-specific genes were defined as those genes
with average logged CPMs higher than 0.2 in both neuron groups and
lower than 0.1in microglia and endothelia.

Determining what drives transcriptome change during ageing
Todetermine which featureis likely to drive expression change during
ageing, we constructed amultiple linear regression model to estimate
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the contribution of genetic and transcriptomic features to the expres-
sion change during ageing. To avoid the effect of non-expressed genes,
we only assessed genes whose average logged CPMis at least 0.1in
excitatory neurons, inhibitory neurons, microglia, endothelia, oligo-
dendrocytes, OPCs and astrocytes. Gene length, exon length, expres-
sionin each cell type and expression specificity for each cell type and
neurons were used to build the regression model to predict the fold
change of gene expression between elderly and adult. Expression speci-
ficity was calculated by the normalized expression in each cell type
divided by the average normalized expression in the remaining cell
types. Expression specificity for neurons was calculated by comparing
the average expression in neurons and the average expression in glia
cells. Wealsoincluded broad cell specificity inthe model, defined by the
sum of the difference between maximum expressed cell type and other
cell types, divided by (number of cell types used - 1). As the number
of reads captured for each gene could be biased towards gene or exon
length, we also included gene and exon length-corrected normalized
expressionlevelsin eachcell types asinput features. Bulk sequencing
isalsoa quantitative way to measure absolute expression levels. Thus,
weincluded the expressionlevels (TPM; transcripts per million mapped
reads) in human frontal cortex from the GTEx portal™. The squared
correlation coefficient between the model prediction and observed
fold change of expression, anindicator of model performance, ranged
from 0.23in microgliato 0.54 in excitatory neurons. Amongall features
assessed, gene lengthyielded the highest correlation coefficient, sug-
gesting thatit hasakey rolein determining expression change during
ageing inneurons and glia cells.

Validation of snRNA-seq results using published data
No other single published study on human PFC spans the same age
range as ours, so we looked to two different datasets for validation
of our results. Herring et al.” includes PFC from 22 gestational weeks
to 40 years old. To validate our infant-specific clusters, we obtained
raw snRNA-seq reads from the Herring paper (publicly available at
GSE168408) and processed them using Cell Ranger (v.7.0.1) with the
following parameters: “--include-introns true --nosecondary”. We fil-
tered and clustered the data in the same way as we did with our own
(described above), using Velmeshev et al. as our reference for cell-type
identification, confirming the presence of infant-specific astrocytes
and excitatory neuronsin alarger sample size. We compared the expres-
sion of the infant-specific differentially expressed genes from our own
data (methods described above) with Herring data for infants (prenatal
samples to2years) and adults (15-40 years), validating our findings of
infant-specific clusters and their respective gene-expression profiles.
To validate the changes we described in the elderly brain, we used
control PFC (BA46) data from Ling et al.??, which includes donors
aged 22-97 years. We downloaded their publicly available raw counts
matrix for each cell type from NeMo (https://assets.nemoarchive.org/
dat-bmx7slt) and normalized the expression levels using the same
strategy: to total number of reads for each cell with afactor of 10,000.
We then compared the expression of genes of interest from our data
in elderly and adult brains in the Ling data. Specifically, we assessed
whether commongenesare downregulatedinelderly cells,and whether
the decrease of expression during ageing is associated with gene length.
Wealso used the control PFC data from Mathys et al.* to validate our
findings. We downloaded their publicly available raw counts matrix for
each celltype fromthe Alzheimer’s disease and ageing brain atlas data
repository (https://compbio.mit.edu/ad_aging_brain) and normalized
to the number of UMI reads per cell per 10,000 UMI reads. This data-
set comprises 189 individuals, and includes only elderly donors (over
70 years old). We then compared the expression of downregulated
genes, common genes and short and long genes in our adult donors,
ourelderly donors and the elderly donors from Mathys et al. The results
were consistent with our own dataset: common genes and short genes
showed decreased expression in neuron and glia cells from elderly

donors. We also compared the expression levels of genes in donors
aged 70-79 years and 80 years and over from Mathys et al., and did not
find a significant change.

MERFISH: sample preparation and imaging
Spatial transcriptomics was performed in two batches using two ver-
sions of the MERFISH platform. Data from each batch were analysed
separately and not integrated into a single analysis. For batch 1, three
adult donors and three elderly donors were selected for spatial tran-
scriptomics on the basis of RNA integrity number, tissue availability
and sex. Vizgen'’s protocol for the sample preparation was followed
with the following modifications. Brains were sectioned and mounted
on Vizgen MERSCOPE slides. After adhering to the coverslip, samples
were fixed in prewarmed 4% paraformaldehyde in 1x PBS for 30 min
at 47 °C, followed by three washes in 1x PBS for 5 min each at room
temperature. Samples were dried for one hour at room temperature.
The samples were then incubated overnight in 70% ethanol at 4 °C to
permeabilize the tissue. Samples were photobleached for 6 hatroom
temperature in the Vizgen Photobleacher. Next, the Vizgen sample
preparation protocol for FFPE tissues was followed, beginning with
anchoring pretreatment (step 3 in Vizgen protocol version 9160012
Rev D). After RNA anchoring, the tissue was embedded in gel embed-
ding solution (containing 0.5% ammonium persulfate, 0.05% TEMED
and Vizgen’s gel embedding premix) and incubated for 22 hwith tissue
clearing solution (Vizgen Clearing Premix and 1:100 proteinase K) at
47 °C.The probe library was applied to the sample and incubated for
48 h at 37 °C. Finally, the samples were washed, incubated with DAPI
and polyT solution for 15 min at room temperature and washed with
formamide wash buffer for 10 min at room temperature. For theimag-
ing, the MERSCOPE 500 gene imaging kit was activated with 250 pl
imaging buffer activatorand 100 pl RNAse inhibitor. Fifteen millilitres
of mineral oil was added through the activation port, the instrument
was primed and theimaging chamber was assembled accordingto the
MERSCOPE user guide. A10x low-resolution DAPI mosaic of the sample
was acquired, and the imaging area was selected for data acquisition.
For MERFISH batch 2, aninfant and three adult donors were selected
onthebasis of RNA integrity number, tissue availability and sex. All tis-
sue processing steps were performed as described above, butimaging
was performed onaMERSCOPE Ultrainstrument. Owing to uncertainty
inthe back compatibility between instruments, these four samples were
treated as their own set of dataand never compared with the six-sample
cohort processed on the older instrument.

MERFISH: post-imaging data processing and analysis

For batch 1, after the MERSCOPE run, the data were decoded using
Vizgen'’s analysis pipeline integrated within the MERSCOPE system.
The Vizgen post-processing tool (VPT, Vizgen) was used to improve
cell segmentation with acombination of pre-filtering with a Gaussian
filter and the CellPose algorithm. For batch 2, the four samplesimaged
on the MERSCOPE Ultra were not subjected to additional processing
using the VPT, because cell segmentation using CellPose was performed
by the MERSCOPE Ultra instrument.

After cell segmentation, only cells with volumes greater than 200 pm?®
were retained for downstream analysis. The cell x gene count matrix
was then analysed with the Seurat R package (v.5.1.0) for cell-type
assignment. Two datasets (one focusing on elderly versus adult, and
one on infant versus adult) were analysed separated using the same
pipeline. Specifically, PCA was performed using the count matrix,
after filtering cells with fewer than 100 transcript counts, followed by
logCPM transformation. We then performed UMAP and KNN cluster-
ing analysis using the top 30 principal components. The resolution
of KNN clustering was set to 0.3, yielding 15 clusters in batch 1and 16
clusters in batch 2. Each cluster was then assigned a specific cell type
according to the expression of marker genes (Extended Data Fig. 6b
and Supplementary Table 11).
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https://compbio.mit.edu/ad_aging_brain

Inbatch 1, clusters 12 and 14 showed mixed expression of marker
genes, preventing cell-type assignment, and were removed from down-
stream analysis. Cluster 1 was composed of excitatory neurons that
could notbe assigned to aspecific layer owing to mixed expression of
layer-specific markers. To investigate the transcriptome change dur-
ing ageing, we compared gene expression between adult and elderly
donors for each cell type. We normalized gene expression first to cell
volume (molecules per2,000 pm?®) and then to the average expression
of aset of control genes that are stably expressed during ageing (Sup-
plementary Table 11). The control genes were defined as genes with a
log,-transformed fold change of expression between elderly and adult
donors>-0.3 and <0.3 in our snRNA-seq dataset.

Inbatch2, clusters 9,10,12 and 15 showed mixed expression of marker
genes and were removed from downstream analysis. Different layers
of excitatory neurons and different subtypes of inhibitory neurons
were analysed together because many of them could not be assigned
to a specific layer owing to mixed expression of layer-specific mark-
ers. Weinvestigated transcriptome change during brain development
using the same strategy aswe did in the elderly and adult dataset. Gene
expression between infant and adult donors was compared, after nor-
malizing to cell volume and a set of control genes stably expressed in
infant and adult donors.

MERFISH gene panel selection

The gene panel used for MERFISH was composed to validate initial
snRNA-seq findings generated from13 donors, focusing on differences
intheelderly and adult donors. Itis composed of 70 marker genes (used
toidentify celltypes), 33 short housekeeping genes, 33 long housekeep-
ing genes, 24 short neuron-specific genes, 21 long neuron-specific
genes, 9 ribosomal-protein genes, 10 nuclear-encoded mitochondrial
genes, 11 DNA damage repair genes and 35 other genes of interest (Sup-
plementary Table11). Allshort housekeeping and neuron-specific genes
came from the first length decile of their respective gene groups and
alllong housekeeping and neuron-specific genes came from the tenth
length decile of their respective gene groups. After the addition of six
donorsto our snRNA-seq data, our housekeeping and neuron-specific
gene lists changed slightly, although the method used to generate
the list did not, and not all of the neuron-specific and housekeeping
genes in the MERFISH panel met the criteria. The MERFISH gene tab
of Supplementary Table 11 reports the decile according to the original
housekeeping and neuron-specific lists used to generate the panel.
If the gene is present on the current list, the corresponding decile is
reported in parentheses.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw RNA-seq and scWGS sequencing data not previously published,
and MERFISH data, are available at dbGaP (phs003445.v1.p1). Processed
dataareavailable at https://publications.wenglab.org/SomaMut/. An
interactive genome browser of the snRNA-seq pseudo bulk expres-
sion data can be found at https://genome.ucsc.edu/s/yutianxiong/
Weng_Lodato_Aging. Previously published single cells analysed in
this study can be found at dbGaP (phs001485.v3.p1) and NIAGADS
(NGO0O0121). Previously published bulk DNA-sequencing data can be
found at dbGap (phs001485.v1.p1), the NCBI Sequence Read Archive
(SRA; accession numbers SRP041470 and SRP061939) and NIAGADS
(NGO0O0121). The previously published Velmeshev et al."” data used for

cell-type annotation were downloaded from SRA accession number
PRJNA434002. The previously published Herring et al.”® data were
downloaded from the Gene Expression Omnibus (GEO) under acces-
sion number GSE168408. The previously published Ling et al.?’ data
were downloaded from the Neuroscience Multi-omic Data Archive
(NeMo) (https://assets.nemoarchive.org/dat-bmx7slt). The previously
published Mathys et al.>° data were downloaded from the Alzheimer’s
disease and ageing brain atlas data repository (https://compbio.mit.
edu/ad_aging_brain). GTEx data were downloaded from the GTEx
portal (https://www.gtexportal.org/home/downloads/adult-gtex/
bulk_tissue_expression). GO biological process terms were sourced
from https://geneontology.org/. DepMap data came from https://dep-
map.org/portal/ using version Public 22Q4.
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Extended DataFig. 5| Validation of downregulation during ageing.

(a) Expression of genes downregulated in the primary analysis (elderly vs.
adult) arealso downregulated when datais broken downinto three groups,
donors15-39 (red, N=5), donors 40-69 (magenta, N = 6), and donors 70-104
(purple, N = 6). Some cell types exhibit continuous downregulation, showing
significant decreases with each age group while others are significantly
downregulated between the 15-39- and 40-69-year-old groups but expression
does not change between the older adult and elderly groups (Two-sided
Wilcoxon rank-sum test). (b) Volcano plots showing the results of expression
changes during ageing, determined by linear regression. Regression slope is
shownonthex axis and -log,,(p-value) on the y axis. Dotted lines indicate
slope and p-value thresholds, slope <-0.0010r>0.001and p < 0.05, used to
determine significance. Inaddition, genes had to be expressed in atleast 25%
oftheelderly or adult cellstobe considered. Blue dots indicate genes that were
alsoidentified as significantly downregulated by pairwise comparison and
Two-sided Wilcoxon rank-sum test. Red dots indicate genes that were identified

assignificantly upregulated by pairwise comparison and Wilcoxon test.
Opencirclesindicate genes that did not meet the pairwise comparison criteria
for fold change and grey circles indicate genes that met the fold change criteria
butdid not have significant p-values in the pairwise comparison. (c) Box plots
showing the expression, inlog(CPM), of significantly downregulated genesin
elderly excitatory neuronsidentified in this study in our donors (left) with
the donors from Ling et al.?’ (right). (d) Box plots comparing expression of
downregulated genesidentified in this study in adults from this study (red,

N =9), all donors from Mathys et al.** (violet, N =189), elderly donors from this
study (lilac, N =7), donors 70-79 from Mathys et al. (light purple, N = 34), and
donors over 80 from Mathys et al. (dark purple, N =155). Two-sided Wilcoxon
rank-sum test comparing adultsin this study to each of the Mathys groups
areall significant. Allbox plots depict median, and first and third quartile.
Whiskers show1.5 x IQR beyond the first and third quartiles. (*, p> 0.05;

*, p>0.01;***p>0.001).
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Extended DataFig. 6 | Spatial transcriptomic validation of snRNA-seq data.

(a) Representative MERFISH sections, showing the assigned cell type from
Seurat clustering. (b) UMAP clustering of MERFISH cells showing all identified
celltypes. Clusters of unknown cells were removed from downstream analysis.
Extindicates cells that expressed multiple excitatory markers and could
notbeassignedto aspecificlayer. X-and Y-axis valuesinaand b reflect pixel
positions. (c) Fold change of elderly and adult MERFISH cells of 9 ribosomal
proteins (left) and 10 nuclear-encoded mitochondrial proteins (right) in

excitatoryandL2/3 neurons (Two-sided Wilcoxon rank-sum test, elderly N =3,
adultN=3).(d,e) Log,fold change of elderly vs. adult nuclear-encoded
mitochondrialgenes by snRNA-seq (Two-sided T-Test, elderly N=7,adult N =9) (d)
and MERFISH (Two-sided Wilcoxon rank-sumtest, elderly N =3, adult N = 3) (e).
Genesshowninbothdand eare colour-coded. Allbox plots depict median, and
firstand third quartile. Whiskers show 1.5 x IQR beyond the first and third
quartiles. Points beyond whiskers are outliers. (*, p < 0.05; **, p < 0.01).
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Extended DataFig.7|See next page for caption.
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Extended DataFig.7|Validation of changesinribosomal-proteingenes
and nuclear-encoded mitochondrial genes during ageing. (a) Expression of
ribosomal-protein genesin three age groups,15-39 (red, N=5),40-69 (magenta,
N=6),and 70-104 (purple, N = 6) always decreases significantly after age 39.
(*,p<0.05;**,p<0.01;** p<0.001; Two-sided Wilcoxon rank-sum test). (b) Box
plotsshowing theregressionslope of ribosomal-protein genes (teal, N=81) and
nuclear-encoded electron transport chaingenes (purple, N =82). Ribosomal
genesshown arethe same as shownin Extended Data Fig. 8 and mitochondrial
genesshownare the same as shownin Extended DataFig. 10. (c) Fold change of
ribosomal proteins (top) and nuclear-encoded mitochondrial genes (bottom) in
ageingintheLingetal.?’ datafor each celltype. The expression changes match
those seenin this study. Ext, excitatory neurons; Inb, inhibitory neurons; Oli,
oligodendrocytes; OPC, oligodendrocyte precursor cells; Ast, astrocytes;
Micro, microglia; Endo, endothelial. (* p < 0.05; two-sided T-test, elderly N =116,
adultN = 64). (d) Box plots comparing expression of ribosomal-protein genesin
adults from thisstudy (red, N =9), alldonors from Mathyset al.>° (violet, N =189),

elderly donors from this study (lilac, N=7), donors 70-79 from Mathys et al.
(light purple, N =35),and donors over 80 from Mathys et al. (dark purple,

N =155). Wilcoxon rank-sum test comparing adults in this study to each of the
Mathys groups are all significant. (*, p < 0.05; ***, p < 0.001; Two-sided Wilcoxon
rank-sum test). (e) Expression of nuclear-encoded mitochondrial genes of the
electrotransportchaininthreeage groups,15-39 (red, N =5),40-69 (magenta,
N=6),and 70-104 (purple, N = 6) always decreases significantly after age 39.
(*,p<0.05;**, p<0.01;*** p <0.001; Two-sided Wilcoxon rank-sum test). (f) Box
plots comparing expression of nuclear-encoded mitochondrial genes of the
electron transport chaininadults from this study (red, N =9), alldonors from
Mathys etal. (violet, N =189), elderly donors from this study (lilac, N=7),
donors 70-79 from Mathys et al. (light purple, N = 34), and donors over 80 from
Mathysetal. (dark purple, N =155). Wilcoxon rank-sum test comparing adultsin
this study to each of the Mathys groups are all significant. Allbox plots depict
median, and firstand third quartile. Whiskers show 1.5 x IQR beyond the first
and third quartiles. (***, p <0.001; Two-sided Wilcoxon rank-sum test).
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Extended DataFig. 8 | Mutationspectrum of sSSNVsin human neurons. specific mutationin adifferent trinucleotide context. (c) Cosine similarity

(a) Total mutation accumulation per neuron correlates significantlywithageat  ofthe twosignatures, Aland A2, derived de novo from the total mutation
arate of 15.1SNVs gained/year (p =2.2x107%, Pearson’s correlation). (b) Mutation ~ spectrum to each single-base substitutionsignature in the COSMIC database.
spectrum of sSNVs called in human neuronscWGS data. Each bar representsa Signature Alis most similar to SBS5. Signature A2 is most similar to SBS30.
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Extended DataFig. 9| Comparison of signature A2with COSMICandknown  cellstoshow no mutantreadsin corresponding bulk tissue from the same
developmentalsignatures. (a) Heat map showing cosine similarity of Signature  donor. In practice, this means that many somatic mutations that occur very

A2, the mutation spectrum of theinfant cellsincluded in this study, signatures earlyindevelopment, which are widely distributed across the body at a high
identified in Bizzotto etal.*’, Coorensetal.” and Park et al.*’,and COSMIC SBS1, mosaic fraction, are filtered out by our analysis, whereas late-occurring, lower
SBSS5, and SBS30. (b) COSMIC SBS1, SBSS5, and SBS30 contribution to Signature allele fraction variants are likely to remain. Non-scWGS studies designed to
A2, theinfant mutation spectrum, and developmental signatures identified in study developmental mosaic mutations do not filter out early variants, probably
Bizzottoetal., Coorensetal.and Park etal. (c) Mutation plots of the signatures contributing to differencesin the overall patterns of mutations between A2 and
comparedina.Percentage of C>T mutations at CpGsitesis higher than the clonal mosaicsidentified in other studies. Thus, Signature A2 may represent a
percentage of C>N mutations at CpG sites for all signatures except SBS30. mutational process thatis prominentin late stages of development that persists
Our mutation calling algorithm, SCAN2, is biased against early developmental inpostnatallife.

somatic mutations, because SCAN2 requires called somatic variants in single
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Extended DataFig.10|Validation of changesingenelength and expression
duringageing. (a,b) Box plots show expression of housekeeping genesin decile
1(a)and neuron-specific genesindecile10 (b) inthree age groups,15-39 (red,
N=5),40-69 (magenta,N=6),and 70-104 (purple, N = 6). Housekeeping genes
always decreases significantly after age 39, while neuron-specific genes show
no significant changes. (**, p < 0.01;***,p < 0.001; Two-sided Wilcoxon rank-sum
test). (c,d) Linear regression slope of housekeeping (c) and neuron-specific (d)
genes by length decile. (e,f) Comparison of elderly to adult expression of
housekeeping (e) and neuron-specific genes (f), as determined in this study,
bysizedecileinLingetal.” (R*=0.16, p=2.29x10"* and R*=0.0009,N.S.,

respectively, elderlyN =116, adult N = 64). Housekeeping genes demonstrate the
same length dependent expression changes seenin this study. Neuron-specific

. adult, this study

[l eiderly. Mathys et al, 2023

2.0

elderly, this study

log(CPM)
1.0
1.0

. B0+, Mathys et al., 2023

genes show nosignificant relationship betweenlength and expression change,
matchingthe findings of this study. (g,h) Box plots show expression of
housekeeping genesindecile1(g) and neuron-specificgenesindecile10 (h) in
adults from this study (red, N=9), alldonors from Mathys et al.*® (violet, N =189),
elderly donors from this study (lilac, N=7), donors 70-79 from Mathys et al.
(light purple, N =34), and donors over 80 from Mathys et al. (dark purple,

N =155). Two-sided Wilcoxon rank-sum test comparing adults in this study
toeach of the Mathys groups are all significantin housekeeping genes, but
neuron-specific genes show nosignificant changes. Allbox plots depict median,
and firstand third quartile. Whiskers show 1.5 x IQR beyond the first and third
quartiles. (***, p < 0.001; Wilcoxon rank-sum test).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|Z| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|Z| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000s

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used in data collection.

Data analysis The snRNA-seq reads were aligned to the human genome and assigned to genes (GENCODE v32) via Cell Ranger (v6.0.2 and v7.0.1). The
barcode and UMI solved counts were further processed with Seurat (v4.3.0 and v5.1.0). scWGS and bulk WGS were first processed
accordingly to GATK best practices. Reads were aligned to the human genome via bwa mem (v0.7.12) with default parameters. PCR
duplicates were then filtered using picard, and the remaining reads were recalibrated via GATK (v4.1.8.1) “BaseRecalibrator” and
“ApplyBQSR”. Genotypes were then identified via GATK (v4.1.8.1) “HaplotypeCaller” and “GenotypeGVCFs”. Finally, somatic SNVs were
identified by comparing the scWGS to corresponding WGS from bulk tissues via SCAN2 (v1). Mutational signature analysis was performed
using SignatureAnalyzer (version:GPU) and MutationalPatterns (v3.16.0). MERFISH data was decoded using Vizgen's analysis pipeline
integrated within the MERSCOPE system. The Vizgen Post-processing tool (VPT) was used for cell segmentation and pre-filtering with a
Gaussian filter and the CellPose algorithm. Gene Ontology analysis was performed in R using "gprofiler2" (v0.2.3) which sourced biological
process terms from geneontology.org.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw RNA-seq and scWGS sequencing data not previously published, and MERFISH data are available at dbGaP (phs003445.v1.p1). Processed data are available at
https://publications.wenglab.org/SomaMut/. An interactive genome browser of the snRNA-seq pseudo bulk expression data can be found at: https://
genome.ucsc.edu/s/yutianxiong/Weng_Lodato_Aging. Previously published single cells analyzed in this study can be found at dbGaP (phs001485.v3.p1) and
NIAGADS (NG00121). Previously published bulk DNA sequencing can be found at dbGap (phs001485.v1.p1), NCBI SRA (SRP041470 and SRP061939), and NIAGADS
(NG00121). The previously published Velmeshev et al. data used for cell type annotation was downloaded from SRA accession number PRINA434002. Previously
published Herring et al. data was downloaded from GEO under accession number GEO: GSE168408. Previously published Ling et al. data was downloaded from the
Neuroscience Multi-omic Data Archive (NeMo) (https://assets.nemoarchive.org/dat-bmx7s1t). Previously published Mathys et al. data was downloaded from the AD
and aging brain atlas data repository (https://compbio.mit.edu/ad_aging_brain). GTEx data was downloaded from the GTEx portal (https://www.gtexportal.org/
home/downloads/adult-gtex/bulk_tissue_expression). Gene Ontology Biological Process terms were sourced from https://geneontology.org/. DepMap data came
from https://depmap.org/portal/ using version Public 22Q4.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Our previous work identified no impact of sex on somatic mutation dynamics so sex was not included as a covariate in this
analysis. To avoid sex bias in RNA-seq data interpretation we included males and females in our adult and elderly samples.
Our infant samples were both male, but we confirmed our findings in infants using a previously published dataset (Herring et
al.) comprising males and females. Additionally, we used a linear model as an alternative method to identify genes that
change during aging. We performed this analysis with and without sex included as a covariate and found no difference in the
results.

Reporting on race, ethnicity, or ' Race and ethnicity were not considered in our analysis.
other socially relevant

groupings

Population characteristics Donor tissue was selected to encompass as wide of a window of human lifespan as possible and a balance of male and
female donors. The presence of neuropathology meeting the criteria for a neurodegenerative disease diagnosis or a
neurological diagnosis prior death was exclusionary.

Recruitment n/a

Ethics oversight All tissue was provided by the National Institutes of Health NeuroBioBank and Banner Sun Health Research Institute Brain and

Body Donation Program, which obtained written authorization and informed consent for all donors. Tissue collection and
distribution for research purposes was conducted in accordance with protocols approved by the NIH NeuroBioBank (IRB
Protocol Number: HM-HP-00042077 or the The Human Brain and Spinal Fluid Resource Center (managed by Sepulveda
Research Corporation), IRB Protocol Number: PCC#: 2015-060672, VA Project #: 0002) and Banner Sun Health Research
Institute Brain and Body Donation Program (WCG IRB Protocol #20120821). Tissue was collected from post-mortem,
deidentified donors and is thus this work is not considered human subjects research by our Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size This study included 100 nuclei analyzed by scWGS from 19 different donors, 3-9 nuclei per donor. The number of donors and nuclei was
informed by our previous works, Lodato et al. 2018 (PMID: 29217584) and Miller et al. 2022 (PMID: 35444284). The same 19 donors were
used for the snRNA-seq studies to allow for gene expression and somatic mutation comparisons within each donor, determining the sample
size. 8,710-36,921 nuclei were analyzed per donor for snRNA-seq, across 2-3 replicates per donor.
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Data exclusions | The following filtering criteria were applied to each sample and cell: more than 100 cells in the sample, reads from mitochondrially-encoded
genes less than 5%, and more than 500 expressed gene in the cell. We further filtered samples “5817 200102”, “5288 200128”, and “5887
PFC 210601” according to their poor consistency with other samples in the following clustering results. To minimize false discovery and focus
on universal changes in aging, mitochondrially-encoded genes and genes in sex chromosomes were removed in the downstream analysis.

Replication snRNA-seq library preparations were performed in duplicate or triplicate in multiple batches, with batches comprising donors from multiple
age groups. After sequencing all cells across replicates were analyzed together in one group.

Randomization  Samples were processed in batches comprising young, adult, and elderly samples to control for batch effects.

Blinding Investigators were not blinded. In order to appropriately control for batch effects and perform analyses to draw conclusions about changes
across age, the investigators needed to know the age of each donor included in the study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
[] clinical data

|:| Dual use research of concern

[] Plants

XXXNXNXNX[]S

Antibodies
Antibodies used MAB377X, mouse anti-NeuN antibody 488 conjugated from Millipore, Donkey anti-Rabbit IgG 647 conjugated (Fisher).
Validation MAB377X was validated as neuron-specific using single-cell transcriptomics, published in our previous manuscript doi: 10.1038/
s41586-022-04640-1. Secondary antibody is a commonly used reagent and was not validated.
Plants
Seed stocks n/a

Novel plant genotypes  n/a

Authentication n/a

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z| All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.




Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

Fresh frozen samples were processed using a 7ml glass dounce homogenizer with approximately 20ug tissue In 5 ml of filter-
sterilized tissue lysis buffer {0.32M sucrose, Smb Call2, 3mM Mgac?, 0.1mM EDTA, 10mM Tris-HCl {pH 8), 0.1% Triton
¥-100, 1mh fresh DTT). The homogenized solution was loaded on top of a filter-sterilized sucrose cushion {1.8M sucrose,
Amh Mghc2, 10mM Tris-HC (pH 8, 1mM OTT) and spun In an ultracentrifuge in an SW28 rotor (13,300 RPM, Zhrs, 45C) to
separate nuclel. Supernatant was removed and nudear pellets were resuspended in ice-cold resuspension buffer (8.5mL
1xPBS/3mM MgC2 + ImL 1xFBS 3mM MECIZ/1% BSA + 500yl Sucrose Cushion), filtered with a 40um cell strainer, then
stained with anti-Neun antibody [directly conjugated to Alexa Fluor 488; Millipore cat. No. MABITTY, clone ABD; 1:1,250)
and an anti-rabbit [gG Alexa Fluor 647 antibody as a negative contrel for 30min. Using a BD biosciences FACSAria Fusion
machine and BD FACSDiva Software, forward scatter A [FSC-A) was first used to isolate large non-replicating cells, This non-
replicating high-FSC-& plus high-NeuN populgtion was confirmed to comprise an excitatory neuran population, comprising 2—
5% of the total population of nuclei in each sample.

BD biosciences FACSAria Fusion

BD FACSDiva™ Software

Qur targeted large, excitatory neuron population comprised 2-5% of the total sample

Muclei were gated away from debris using side scatter (35C) and forward scatter (F5C). Doublets were gated out using F5C-
area vs, F5C-helght and S5C-area vs, S5C_height. MeuN stalning produced a bimodal signal distribution, distinguishing MeuN+
and MeuN- nudei. Large neuronal nuclei, representing excitatory pyramidal neurons, were further identified by collecting the

nuclei with highest NeuM signal among the NeuM+ neuronal fraction, and gating for the population with the highest FSC-A
signal and excluding Alexa-Fluar-647-high events,

[ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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