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Single-cell transcriptomic and genomic 
changes in the ageing human brain

Ailsa M. Jeffries1,5, Tianxiong Yu2,5, Jennifer S. Ziegenfuss1, Allie K. Tolles1, Christina E. Baer3,4, 

Cesar Bautista Sotelo1, Yerin Kim1, Zhiping Weng2,6 ✉ & Michael A. Lodato1,6 ✉

Over time, cells in the brain and in the body accumulate damage, which contributes to 

the ageing process1. In the human brain, the prefrontal cortex undergoes age-related 

changes that can affect cognitive functioning later in life2. Here, using single-nucleus 

RNA sequencing (snRNA-seq), single-cell whole-genome sequencing (scWGS)  

and spatial transcriptomics, we identify gene-expression and genomic changes  

in the human prefrontal cortex across lifespan, from infancy to centenarian.  

snRNA-seq identified infant-specific cell clusters enriched for the expression of 

neurodevelopmental genes, as well as an age-associated common downregulation  

of cell-essential homeostatic genes that function in ribosomes, transport and 

metabolism across cell types. Conversely, the expression of neuron-specific genes 

generally remains stable throughout life. These findings were validated with spatial 

transcriptomics. scWGS identified two age-associated mutational signatures that 

correlate with gene transcription and gene repression, respectively, and revealed 

gene length- and expression-level-dependent rates of somatic mutation in neurons 

that correlate with the transcriptomic landscape of the aged human brain. Our results 

provide insight into crucial aspects of human brain development and ageing, and shed 

light on transcriptomic and genomic dynamics.

Bulk RNA-sequencing studies of ageing have revealed disruptions 

to essential cellular processes such as transcription, translation and 

growth-factor signalling3, with processes involved in mitochondrial 

function, neuronal activity and DNA damage being dysregulated 

in the ageing brain2,4. Cell-type-specific changes during ageing are 

obscured in bulk analyses and are poorly understood. This represents 

a major knowledge gap in the human brain, in which molecularly 

distinct cell types perform specific functions throughout life. The 

advent of single-cell genomics has allowed high-resolution analysis 

of both DNA and RNA. scWGS and other techniques have shown that 

somatic mutations accumulate in human neurons during ageing and 

in age-related diseases, raising the possibility that such variants con-

tribute to transcriptional dysregulation and the concomitant increased 

susceptibility to dysfunction and disease that accompanies advanced 

age5–10. Single-cell RNA sequencing and snRNA-seq have refined the 

understanding of brain cell states11–14, and have been used to identify 

age-related and disease-related changes in several organs15, including 

the human brain16,17. Despite this progress, our understanding of the 

transcriptional and genomic changes associated with healthy ageing—

which might lay the groundwork for certain brain diseases—remains 

incomplete.

Here, to begin to capture the dynamics of human brain ageing in a 

cell-type-specific manner, we generated droplet-based snRNA-seq and 

scWGS libraries of fresh-frozen human prefrontal cortex (PFC) (Fig. 1a) 

from 19 neurotypical donors ranging in age from infant to centenarian 

(Table 1 and Supplementary Table 1). As orthogonal validation of our 

snRNA-seq results, we performed multiplexed error-robust fluorescent 

in situ hybridization (MERFISH), a quantitative spatial-transcriptomic 

technique with single-molecule resolution, on a subset of donors. In the 

snRNA-seq experiments, 367,317 nuclei remained after quality control 

and artefact filtering18, with a mean of 19,332 per donor (Supplementary 

Fig. 1), and dimensionality reduction and hierarchical clustering yielded 

31 clusters (Fig. 1b). We annotated these clusters using a previously pub-

lished human PFC dataset19 as a reference (Fig. 1c and Supplementary 

Table 2), and identified clusters of excitatory neurons from various 

cortical layers, four subtypes of inhibitory neurons (IN-PV, IN-SST, 

IN-SV2C and IN-VIP), microglia, oligodendrocytes, oligodendrocyte 

precursor cells (OPCs), astrocytes and endothelial cells. The expres-

sion of canonical marker genes for each cell type was cluster-specific 

(Supplementary Fig. 2). Within these broad classes, we identified sub-

classes of cells that, despite their similarity, populated distinct clusters 

(Fig. 1b). On average, excitatory neurons expressed more than twice as 

many genes as did glial and endothelial cells (Fig. 1d).

Brain cell-type proportions during life

We detected no difference in the overall ratios of neurons to glia or 

excitatory neurons to inhibitory neurons. In addition, we did not 

observe the loss of any neuron subtype during non-pathological age-

ing, nor did we see evidence of the expansion of reactive microglia in the 
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Fig. 1 | Study design and characterization of droplet-based snRNA-seq in 

human PFC. a, Overall study design. Human PFC was analysed by three single-

cell genomic techniques in parallel. b, Dimensional reduction and clustering  

of all snRNA-seq nuclei after filtration yielded several clusters for each cell  

type (Ast, astrocyte; CC, cortico-cortico; Endo, endothelial; L, layer; Oli, 

oligodendrocyte; UMAP, uniform manifold approximation and projection).  

c, Percentage of nuclei in each cluster of our data that correspond to the 

annotated reference cluster. d, Gene-expression profiles for each subcluster 

within a cell type correspond most closely to the cells of the same lineage based 

on Pearson’s correlation coefficient. The bar plot above the heat map shows the 

number of genes expressed in each cluster.
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elderly (aged >65 years) brain (Extended Data Fig. 1 and Supplementary 

Table 3). However, we did identify subclusters of neurons and astro-

cytes that were composed exclusively or nearly exclusively of nuclei 

from infant donors (Fig. 2a). As a whole, the infant-specific neuron 

cluster resembled L2/3 neurons, but closer examination identified 

groups of cells in this cluster expressing markers of L4 or L5/6 neurons 

(Extended Data Fig. 2), and revealed that genes involved in development 

and neuron migration (Fig. 2b), such as SLIT3 and ROBO1, were also 

expressed in this group (Supplementary Tables 4 and 5). An analysis of 

MERFISH data generated using the Ultra platform from a subset of four 

donors (a 0.4-year-old male individual, a 15-year-old female individual, 

a 28-year-old male individual and a 57-year-old male individual) showed 

that infant neurons mostly exhibited correct laminar positioning, with 

CUX2+ L2/3 neurons, RORB+ L4 neurons and HS3ST4+ L5/6 neurons20 

showing similar distributions across donors (Fig. 2c,d and Extended 

Data Fig. 3). HS3ST4 also seems to mark white-matter neurons in all 

donors, similar to TLE4, a canonical L5/6 marker21. These data sug-

gest that cluster L2/3-2 represents immature excitatory neurons that 

populate the various layers of the infant neocortex. Infant-specific 

astrocytes expressed neurodevelopmental genes that mark imma-

ture astrocytes; for example, HES5, ID4, MFGE8 and DCC (refs. 22–24) 

(Fig. 2b, Supplementary Tables 4 and 5). Our reanalysis of a published 

snRNA-seq dataset of human PFC examining fetal development through 

adulthood25 confirmed the patterns of down- and upregulated genes 

that we observed in infant neurons and astrocytes (Extended Data Fig. 4 

and Supplementary Fig. 3).

The abundance of OPCs decreased during ageing (P = 1.31 × 10−2, 

Wilcoxon rank-sum test), being highest in infant donors and decreas-

ing over lifespan (Fig. 2e), whereas mature oligodendrocytes increased 

during ageing in the brain (P = 1.31 × 10−2, Wilcoxon rank-sum test com-

paring infant with adult and elderly). These data suggest that the pool 

of OPCs differentiates into mature oligodendrocytes during life with 

incomplete replacement; thus, the capacity to generate new oligoden-

drocytes might diminish in elderly people.

Increased cell-to-cell transcriptional variability during ageing has 

been identified in non-brain tissues26–28, and is thought to be a conse-

quence of ageing-related disruptions to the genome, epigenome and 

transcriptome. In our data, we detected only one cell type—IN-SST 

neurons—with a significant increase in the coefficient of variation in 

the transcriptome in elderly brains (Fig. 2f; P = 4.30 × 10−2, Wilcoxon 

rank-sum test). We observed similar trends when analysing our cohort 

in three age groups (15–39, 40–69 and 70 and over; Supplementary 

Fig. 4). Furthermore, the expression of SST and VIP, which are markers 

of two distinct classes of inhibitory neurons, decreased significantly 

with age (fold changes of −2.63 and −1.46; corrected P values < 2.2 ×  

10−16) in elderly IN-SST and IN-VIP cells, respectively (Fig. 2g). The 

loss of these functionally important marker genes, combined with 

increased transcriptional variability, suggests that inhibitory neu-

rons are changing in fundamental ways during ageing. A previous 

report described a decrease in IN-SST and IN-VIP inhibitory neurons 

during ageing in the human brain16. Although we did not detect this 

phenomenon (Extended Data Fig. 1c,d), our data are consistent with 

the notion that inhibitory signalling is compromised in the elderly  

brain.

Housekeeping genes decrease in ageing

Differential expression analysis by cell type, comparing the 7 elderly 

cases with the 10 adult cases, yielded 2,803 genes that changed signifi-

cantly with age (log2(elderly/adult) > 0.5, corrected P < 0.05) (Fig. 3a and 

Supplementary Table 6). We obtained similar results when our cohort 

was binned into three groups, or when using an alternate linear model 

method (Extended Data Fig. 5 and Supplementary Table 7). Reanalysis of 

published data from control donors spanning 38–93 years of age29, and 

from a cohort of elderly donors30, confirmed our results (Extended Data 

Fig. 5). In every cell type, more genes were downregulated during ageing 

than upregulated (Wilcoxon signed-rank test, P = 2.44 × 10−4), and most 

downregulated genes were identified in neurons. L2/3 excitatory neu-

rons had the most up- and downregulated genes (201 and 1,273 respec-

tively) of all cell types. A total of 124 genes that were downregulated 

in ageing were commonly downregulated across multiple cell types 

(Fig. 3b and Supplementary Table 8), reflecting an increase relative to 

random chance (P < 0.001, random permutation test). For example, 

the heat-shock protein HSPA8, the cytoskeletal protein TUBA1A and 

eight other genes were significantly downregulated in all 13 brain-cell 

types during ageing. Other commonly downregulated genes across 

cell types included other cytoskeletal genes such as TUBB3 (down in 

12/13 cell types), TUBA4A (10/13) and TUBB (9/13); the calmodulin genes 

CALM2 and CALM3 (9/13 and 12/13, respectively); and the vesicle pro-

tein VAMP2 (13/13). By contrast, only two transcripts—the antisense 

transcript of UBA6, a ubiquitin-modifying enzyme, and TMTC1, an 

endoplasmic-reticulum protein involved in calcium homeostasis—were 

commonly upregulated in multiple types of neuron and glia.

A common feature seen across cell types in the ageing brain was the 

widespread downregulation of ‘housekeeping’ genes. Indeed, gene 

ontology (GO) analysis of downregulated genes yielded common terms 

across all cell types except endothelial cells (Fig. 3c and Supplementary 

Table 9). This result was robust to evenly down-sampling lists of differ-

entially expressed genes across cell types (Supplementary Table 10). In 

non-endothelial cells, terms related to housekeeping functions such 

as translation, metabolism, homeostasis, ribosomes, intracellular 

localization and intracellular transport were significantly enriched in 

the downregulated genes. To assess the expression changes of genes 

with common cellular functions further and in an unbiased manner, 

we defined a set of housekeeping genes in our dataset as those genes 

that were stably expressed in all brain cell types (average log(counts 

Table 1 | Sample information for snRNA-seq and scWGS

Group Age 

(years)

Sex Nuclei Segmented cells

snRNA-seq scWGS MERFISH

Infant 0.4 M 23,091 7 26,036a

0.6 M 18,399 9 −

Adult 15 F 29,317 7 58,328a

17 M 11,305 4 −

27 M 28,171 5 34,850b

28 M 20,425 5 63,394a

38 M 21,135 4 −

42 F 36,921 7 21,162b

44 M 11,097 3 −

49 F 22,958 5 28,292b

53 M 9,268 3 –

57 M 20,751 7 73,406a

Elderly 66 F 14,746 5 −

70 F 8,710 3 −

82 M 28,888 7 12,760b

82 F 17,382 3 15,451b

87 M 14,351 4 11,802b

93 M 16,781 5 −

104 F 13,621 7 −

Total 19 donors 12 M, 7 F 367,317 100 345,481

Group, age and sex information for each donor brain. We report the numbers of unsorted 

nuclei input for snRNA-seq and sorted NeuN+ neuronal nuclei used for scWGS from each 

brain, as well as the number of segmented cells derived from MERFISH when applicable.  

Dorsolateral PFC was used for all experiments. aMERFISH samples prepared on the  

MERSCOPE Ultra instrument; bMERFISH samples prepared on the MERSCOPE instrument.
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per million (CPM)) > 0.1 in each cell type and with differences of less 

than 0.1 between cell types), including endothelial cells and microglia 

that derive from a distinct embryological origin from that of neurons 

and other glia (Supplementary Table 11), and measured their changes in 

expression during ageing (Supplementary Fig. 5a). By the same logic, we 

defined neuron-specific genes as those detected in all neuron subtypes 

but absent in non-neuronal cells (Supplementary Table 11). Expression 

of these housekeeping genes decreased in elderly relative to adult neu-

rons across subtypes (Fig. 3d). By contrast, neuron-specific genes did 

not decrease in neurons during ageing (Supplementary Fig. 5b). Thus, 
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Fig. 2 | Changes in the transcriptional state of brain cells across the human 

lifespan. a, Clusters plotted by donor contribution as a percentage of total 

cells in the cluster. L2/3-2 and Ast-3 are composed nearly completely of nuclei 

from infant donors. b, GO terms derived from differentially expressed genes 

upregulated in infant-specific clusters plotted as general categories (see 

Supplementary Table 5 for a full list of terms and category designations). 

Development-related terms (shades of green) are most common. c,d, MERFISH 

section from a 0.4-year-old male donor (c) and a 15-year-old female donor (d), 

showing correct laminar positioning. Circles correspond to excitatory neurons 

and are coloured according to marker-gene expression (red, CUX2 (L2/3); 

green, RORB (L4); blue, HS3ST4 (L5/6); yellow, CUX2 and RORB co-expression; 

teal, RORB and HS3ST4 co-expression). x- and y-axis values reflect pixel 

positions e, Contribution of OPCs (top) and oligodendrocytes (bottom) to the 

total nuclei identified in each donor (*P < 0.05). f, Transcriptional variability  

in IN-SST neurons. Variability significantly increases in neurons from elderly 

donors. Box plots depict median and first and third quartiles. Whiskers show 

1.5 times the interquartile range (IQR) beyond the first and third quartiles 

(P = 4.30 × 10−2, two-sided Wilcoxon rank-sum test; elderly n = 7, adult n = 9).  

g, Log2(elderly/adult) fold change plotted for each marker gene. Dot size 

corresponds to expression in each cell type. Dots circled in black have 

statistically significant fold changes, meeting our criteria for differential 

expression.
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Fig. 3 | Common downregulation of genes across cell types. a, Number of 

downregulated (blue) and upregulated (red) genes for each cell type in elderly 

donors. DEGs, differentially expressed genes. b, Heat map of significantly 

downregulated differentially expressed genes in elderly donors. Genes not 

differentially expressed are in white. The leftmost genes are defined as common 

across cell types (down in one or more excitatory, one or more inhibitory and two 

or more non-neuronal cell types). c, GO terms of genes downregulated in ageing 

plotted as general categories (see Supplementary Table 8 for full GO results). 

Housekeeping functions (shades of blue) are commonly downregulated.  

d, Housekeeping genes are significantly downregulated in elderly relative to 

adult brains in all neuron types. Boxes show median, first and third quartiles. 

Whiskers show 1.5 × IQR beyond the first and third quartiles (****P < 0.0001 and 

fold change < −0.05, two-sided Wilcoxon rank-sum test; elderly n = 7, adult n = 9). 

e, Mean gene effect score for all of the downregulated (blue) and upregulated 

(red) genes (in elderly versus adult donors) in the DepMap database.  

The downregulated genes for both neurons (left) and microglia (right) are 

more essential than the upregulated genes (two-sided t-test; neurons down 

n = 1,954, neurons up n = 455, microglia down n = 149, microglia up n = 75; neurons 

****P = 7.33 × 10−7, microglia ****P = 9.09 × 10−7). Boxes and whiskers as in d. Points 

beyond whiskers are outliers. f,g, Fold change in elderly versus adult ribosomal-

protein genes from both the small and the large subunit by snRNA-seq (two-sided 

t-test; elderly n = 7, adult n = 9) (f) and MERFISH (two-sided Wilcoxon rank-sum 

test; elderly n = 3, adult n = 3) (g). Inb, inhibitory. Genes shown in both f and g are 

colour-coded. Boxes and whiskers as in e. h, Expression of immediate early 

genes in excitatory neurons decreases with age. Grey shading, 95% confidence 

intervals. All data points shown (*P < 0.05, **P < 0.01, ***P < 0.001).
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neurons lose the expression of genes related to general cell function, 

but maintain cell identity in the ageing brain.

The DepMap database scores gene essentiality on the basis of survival 

rates after knockout in hundreds of cancer cell lines. Using DepMap, 

we found that genes that were downregulated with age in neurons and 

microglia were more often essential for cell survival than were genes 

that were upregulated (neurons: P = 7.33 × 10−7; microglia: P = 9.09 × 10−7, 

two-sided t-test) (Fig. 3e and Supplementary Table 11), suggesting that 

genes that are downregulated in ageing reduce brain-cell viability.

RPS3A, RPL26 and RPL15 (all encoding ribosomal proteins) were 

significantly downregulated during ageing in 11 out of 13 cell types 

(Supplementary Table 8), and 14 other ribosomal-protein genes were 

commonly downregulated. This prompted us to examine the expres-

sion level of all ribosomal genes. We observed a near-universal trend 

of a decrease in the expression of genes encoding the small and large 

ribosomal subunits during ageing—much more than would be expected 

by chance (P values < 3.76 × 10−6; Fisher’s exact test) (Fig. 3f and Sup-

plementary Fig. 6). To validate this finding, we performed MERFISH 

experiments on three elderly brains (82 years (male), 82 years (female) 

and 87 years (male)) and three adult brains (28 years (male), 42 years 

(female) and 49 years (female)). Our results showed that across cell 

types, the expression of nine ribosomal proteins decreased in elderly 

brains, with significant decreases in all but OPCs (Fig. 3g, Extended 

Data Fig. 6 and Supplementary Table 11). Nuclear-encoded proteins 

of the mitochondrial electron transport chain, except for complex II 

genes, also showed coordinated downregulation by both snRNA-seq 

and MERFISH (Extended Data Fig. 6d,e and Supplementary Fig. 7). 

Analysis of our snRNA-seq cohort in three age groups instead of two 

indicates that both ribosomal and mitochondrial genes decrease signifi-

cantly after the age of 40 years, with donors aged 40–69 years showing 

similar expression of these genes to that of donors aged 70–104 years 

(Extended Data Fig. 7). These data suggest that neurons become less 

metabolically active during life. Along these lines, the expression of 

immediate early genes, which are activated rapidly during neuronal 

stimulation31, decreases during brain ageing (Fig. 3h).

Mutation patterns reflect transcription

Somatic mutations accumulate in cells during life for many cell types 

throughout the human body9,32–35, including in post-mitotic neurons of 

the human brain6,8,9. Neuronal rates of somatic mutation correlate with 

transcription as measured by bulk RNA-seq in the brain5–7,9, suggesting 

that somatic mutations can affect important brain gene-regulatory pro-

grams. Mutational signature analysis has implicated the activity of sev-

eral DNA-repair genes in generating somatic mutations in neurons5,7,10. 

Thus, both the upstream causes and downstream effects of single-cell 

somatic mutations can be studied using single-cell gene expression.

To link changes in the neuronal transcriptome to changes in the 

somatic mutation burden of individual neurons, we performed scWGS 

using primary template-directed amplification (PTA)7,36 on neurons 

from the same brain region and donors analysed by snRNA-seq (Sup-

plementary Table 12). We used the SCAN2 algorithm6 to identify somatic 

single-nucleotide variants (sSNVs) in scWGS data from each sample 

(Supplementary Table 13). In agreement with previous reports6,7,9, our 

analysis suggested that sSNVs accumulate at a rate of 15.1 per neuron 

per year (R2 = 0.87, P = 2.20 × 10−16) (Extended Data Fig. 8a). The overall 

pattern of mutations resembles a known signature called SBS5 (cosine 

similarity 0.96), first identified by the Catalogue Of Somatic Mutations 

In Cancer (COSMIC) consortium, which accumulates during life across 

many tissues37 (Extended Data Fig. 8b,c).

We compared the changes in neuronal gene expression with the 

age-related patterns of somatic mutation in neurons to investigate 

the relationships between the genome and the transcriptome in age-

ing. We found that the overall, SBS5-like spectrum of neuron sSNVs 

was composed of two distinct signatures, which we name A1 and A2 

(Fig. 4a, Supplementary Fig. 8 and Extended Data Fig. 8c). Signature A1 

resembled SBS5 (cosine similarity 0.88), and correlated strongly with 

the age of the donor (R2 = 0.88, P = 3.30 × 10−50) (Fig. 4b), accounting for 

12.1 of the 15.1 mutations per year. The burden of signature A1 also cor-

related strongly with neuronal gene-expression levels (Fig. 4c and Sup-

plementary Fig. 8; chi-squared test), demonstrating that transcription 

in neurons sensitizes some loci to specific types of somatic mutation. 

In line with this, significant transcriptional strand bias in sSNVs, which 

is thought to result from asymmetrical damage and repair rates on 

template and non-template strands at transcribed loci38, was observed 

in medium to highly expressed genes but not in genes expressed at low 

levels (Fig. 4d; asterisks denote significant deviations from 50:50). 

Furthermore, signature A1 was enriched in active chromatin states in 

the human brain at active transcription start sites (TSSs), enhancers, 

bivalent TSSs and weakly repressed polycomb sites, but depleted at 

quiescent and weakly transcribed loci (Fig. 4g and Supplementary 

Table 14; chi-squared test).

Signature A2 accounted for fewer age-related mutations per year 

(3; R2 = 0.42, P = 6.60 × 10−14), and most sSNVs in infant neurons were 

derived from signature A2 (Fig. 4b,e and Supplementary Table 13). Sig-

nature A2 showed high similarity to developmental mosaic mutations 

identified in three separate studies that used orthogonal methods to 

scWGS39–41 (cosine similarity 0.77, 0.81 and 0.83; Extended Data Fig. 9a). 

The sSNVs identified in our infant donors were also similar to those con-

firmed developmental mosaics (cosine similarity 0.82, 0.85 and 0.88, 

Extended Data Fig. 9a). Signature A2 clustered with COSMIC signature 

SBS30 (cosine similarity 0.82) (Extended Data Fig. 8c). Signature A2 

mutation rates anticorrelate with neuron gene-expression levels and 

are enriched in intergenic regions (Fig. 4f), in agreement with trends 

observed for SBS30 (COSMIC database). In accordance with its enrich-

ment in genes expressed at low levels, signature A2 is enriched in the 

human brain in chromatin states found at sites of weak transcription, 

and is depleted at repressed and weakly repressed polycomb sites 

(Fig. 4h and Supplementary Table 14; chi-squared test).

Nevertheless, signature A2 differs from SBS30 in some key ways. 

SBS30 comprises C>T variants almost exclusively, and these variants 

are depleted at CpG dinucleotides (Extended Data Fig. 9c). By contrast, 

signature A2 contains substitutions in addition to C>T, such as C>A, 

which we previously linked to increased oxidative DNA damage during 

ageing, and T>C, which increases with age7,8. Similarly to confirmed 

developmental clonal mosaic mutations identified in other studies 

using non-scWGS methods39–41, signature A2 shows contributions of 

SBS1 and SBS5 in addition to SBS30 (Extended Data Fig. 9b). Signa-

ture A2 shows higher CpG>TpG variants than does SBS30, suggesting 

that deamination of methylated cytosines has a role in the genesis of 

signature A2, as it does in confirmed mosaics (Extended Data Fig. 9c).  

A high burden of C>T at CpG dinucleotides distinguishes biological 

from technical mutational signatures in single-cell genomics7,42.

The differences observed between signatures A1 and A2 with respect 

to their rate of accumulation per year, their differential correlation 

with neuron gene expression, their distinct relative burden in genic 

versus non-genic regions and their differential correlation with brain 

chromatin states support the notion that these signatures represent 

biologically distinct components of the overall, SBS5-like mutation 

spectrum observed in single human neurons. Signature A1 is the pre-

dominant source of age-related SNVs in neurons and correlates with 

neuron gene expression, confirming that transcription directly deter-

mines the neuronal sSNV rate. Signature A2 seems to be more active 

in development and early life, but signature A2 mutations continue to 

accumulate during ageing, at transcriptionally inactive loci.

Gene length, transcription and mutation in ageing

Somatic mutations arise from DNA damage that occurs through a vari-

ety of mechanisms. Long genes are downregulated in ageing across 
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many organs—an effect that is attributed to their naturally increased 

likelihood of acquiring transcription-blocking DNA damage owing to 

random chance43–45. We find that sSNV rates correlate with neuronal 

gene expression6,7 (Fig. 4c), suggesting that transcription and DNA dam-

age are linked. How gene length and expression level relate to transcrip-

tional changes in ageing, and whether differences in somatic mutation 
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Fig. 4 | scWGS reveals sSNV mutational signatures linked to expression.  

a, De novo mutational signature analysis of sSNVs in human neurons revealed 

two signatures: A1 dominated by T>C mutations and A2 dominated by C>T 

mutations. Trinucleotide contexts are the same as shown in Extended Data 

Fig. 6c. b, Number of signature A1 sSNVs in each neuron plotted by age. Signature 

A1 strongly correlates with age (R2 = 0.88, P = 3.30 × 10−50) with an extrapolated 

mutation rate of 12.1 SNVs per year. c, sSNV enrichment of signature A1 in coding 

regions plotted by neuron expression quantile (left) and genic versus intergenic 

regions (right). Signature A1 is enriched in the highest-expressed genes and 

genic regions (chi-squared test). d, Percentage of total sSNVs derived from the 

transcribed strand broken down by expression quantile. T>C and C>T strand 

bias increases with expression (chi-squared test; *multiple-testing-corrected 

false discovery rate (FDR) < 0.05; **multiple-testing-corrected FDR < 0.01).  

e, Number of signature A2 sSNVs in each neuron plotted by age. Signature A2 

correlates with age (R2 = 0.42, P = 6.60 × 10−14) with an extrapolated mutation 

rate of 3 SNVs per year. f, sSNV enrichment of signature A2 in coding regions 

plotted by neuron expression quantile (left) and genic versus intergenic 

regions (right). Signature A2 is depleted in the highest-expressed genes and 

enriched in the lowest-expressed genes as well as intergenic regions (*P < 0.05, 

chi-squared test). g,h, Mutation enrichment in human brain chromatin  

states for signature A1 (g) and signature A2 (h) (chi-squared test; *P < 0.05, 

***P < 0.001, ****P < 0.0001). TssA, active TSS; TssAFlnk, flanking active TSS; 

TxFlnk, transcription at gene 5′ and 3′; Tx, strong transcription; TxWk, weak 

transcription; EnhG, genic enhancers; Enh, enhancers; ZNF/Rpts, ZNF genes 

and repeats; Het, heterochromatin; TssBiv, bivalent or poised TSS; BivFlnk, 

flanking bivalent TSS or enhancer; EnhBiv, bivalent enhancer; ReprPC, 

repressed polycomb; ReprPCWk, weak repressed polycomb; Quies, quiescent 

or low expression.
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patterns based on gene size or transcription correlate age-associated 

changes, are unknown.

To investigate the effects of gene length and expression level on 

transcriptional changes in ageing, we performed a multiple linear 

regression analysis. We found that high basal expression predicts 

decreased expression in aged donors (Fig. 5a, Supplementary Fig. 9a 

and Supplementary Table 15). We confirmed this relationship using 

bulk brain expression data from the GTEx consortium. However, a more 

robust effect was observed for gene size. There was a positive correla-

tion between gene length and expression in elderly neurons compared 

with adult neurons. In other words, longer genes are more likely to 

maintain or increase their expression during ageing, and, unlike in other 

organs, downregulated genes in neurons are more likely to be short. 

A significant but lower magnitude effect was also observed for exon 

length and expression, suggesting that this effect was driven mostly 

by gene length, not transcript length. This length effect was stronger 

in excitatory and inhibitory neurons (R = 0.59 and 0.57, respectively) 

than in glia (average R = 0.35), and downregulated genes in neurons 

were shorter than those in glia (Fig. 5b), highlighting a cell-type-specific 

effect. Although in opposition to the relationship observed in many 

tissues, our data agree with data from the mouse frontal cortex45 and 

bulk-sorted retinal ganglion cells, in which long gene expression is 

preserved during ageing45.

A larger percentage of neurons than non-neurons expresses the 

topoisomerases TOP1 and TOP2B, and the topoisomerase interactors 

PARP1, TDP1 and BTBD1(P = 8.17 × 10−5; Wilcoxon rank-sum test) (Fig. 5c). 

Neurons rely on topoisomerase activity to mitigate the torsional stress 

generated when unwinding neuronal genes during transcription46, 

which tend to be longer than broadly expressed housekeeping genes47 

(Fig. 5d), suggesting that high topoisomerase expression protects long 

genes in neurons.

Our multiple linear regression model results are in general agreement 

with the results from GO analysis that suggested that housekeeping 

genes are downregulated in ageing (Fig. 3c), because housekeeping 

genes are generally short (Fig. 5d) and highly expressed48–50 (Fig. 5e 

and Supplementary Fig. 9b,c).

Our combined single-cell genomic and transcriptomic dataset 

allowed us to probe the relationship between gene size, genome dam-

age and age-related expression changes in depth at the single-neuron 

level. Because gene length and gene function are related in the brain 

(neuronal genes tend to be long), we separately analysed the relation-

ship between gene length and expression change during excitatory 

neuron ageing in neuron-specific genes and housekeeping genes. 

Housekeeping genes showed a positive correlation between gene 

length and expression change in ageing (R2 = 0.50, P = 1.35 × 10−281) 

(Fig. 5f and Supplementary Fig. 10), such that the shortest genes were 

the most downregulated, whereas the longest showed no change or 

slightly increased in aged cells. This pattern resembled the downregu-

lation of short genes observed in the overall transcriptome (Fig. 5b). 

However, across neuron-specific genes, there was a significantly 

weaker relationship (Fisher’s r-to-z transformation, P = 2.08 × 10−11) 

between gene length and expression change in aged brains (R2 = 0.20, 

P = 1.24 × 10−3) (Fig. 5g and Supplementary Fig. 11). These conclusions 

were validated by analyses of previously published datasets and by 

analysis of our data using different groupings or using a linear model 

method (Extended Data Fig. 10). MERFISH analysis of 33 short house-

keeping genes, 33 long housekeeping genes, 24 short neuron-specific 

genes and 21 long neuron-specific genes confirmed the downregulation 

of short housekeeping genes in samples from elderly donors relative to 

samples from adult donors (P = 3.4 × 10−5, Wilcoxon rank-sum test), and 

did not identify any significant changes in long housekeeping genes 

or neuron-specific genes of either size (Fig. 5h).

Within gene classes, the sSNV rate mirrored changes in expression 

during ageing; in housekeeping genes, the sSNV rate decreased as gene 

length increased (R2 = 0.44, P = 3.52 × 10−2) (Fig. 5i and Supplementary 

Table 16), whereas in neuron-specific genes there was no significant 

relationship between gene length and SNV rate (R2 = 0.02, P = 0.706) 

(Fig. 5j and Supplementary Table 16). These data suggest that there 

are distinct patterns of DNA damage and repair in housekeeping and 

neuron-specific genes (Fig. 5k). Thus, gene length, gene function and 

genome damage combinatorially affect the transcriptome of the age-

ing brain.

Discussion

Here we used snRNA-seq, scWGS and spatial transcriptomics to study 

genomic and transcriptomic changes in the brain during life. We con-

clude that short, highly expressed housekeeping genes show high rates 

of sSNV accumulation during life that correlate with reduced expres-

sion. Several lines of evidence lead us to this conclusion. First, house-

keeping functions were the most commonly enriched GO terms for 

downregulated genes, dominating the neurons in particular, whereas 

neuron-specific genes remained flat during ageing in general, with no 

significant changes in expression. Second, housekeeping genes were 

short and highly expressed, in agreement with previous literature. 

Third, sSNV rates in neurons correlated with neuron gene-expression 

levels. Indeed, the shortest housekeeping genes, which showed high 

levels of expression, showed the highest sSNV rates. Finally, a multiple 

linear regression model showed that high expression correlated with 

the likelihood of transcriptional downregulation in ageing, and that 

long gene length correlated with the maintenance or an increase of 

transcript levels in ageing. The relationship between gene length and 

the ageing transcriptome has been a point of curiosity in the field, but 

thus far, this association has varied across tissues43–45. Our analysis sug-

gests that in neurons, long genes related to cell identity are preserved 

in ageing, whereas short housekeeping genes accumulate somatic 

mutations and decrease in abundance during life.

Several mechanisms could explain this relationship. First, mutations 

might directly generate premature stop codons or change patterns 

of RNA splicing, inducing nonsense-mediated decay of mutant tran-

scripts. Second, aberrant DNA-repair processes involved in generating 

somatic mutations cause local epigenetic dysregulation51, affect-

ing transcript levels. Third, differential repair of housekeeping and 

neuron-specific genes could have a role in differential sSNV burdens. 

Recently, single-stranded DNA lesions were shown to endure for long 

periods of time—up to years—in human cells, in the absence of active 

DNA repair52. sSNV rates might be high in short, highly expressed genes 

because they show preferential transcription-coupled DNA repair53–55, 

meaning that DNA damage that occurs during transcription56 might be 

efficiently made into permanent, double-stranded mutations owing to 

repair errors. Neurons might differ from cells in other organs because 

of their post-mitotic nature, or owing to the high expression of topoi-

somerase genes, which protect long genes.

Our work also defined other changes in the human brain during 

healthy life. In the infant brain, we identified populations of immature 

neurons and astrocytes, and an increased ratio of oligodendrocyte 

precursors to mature oligodendrocytes, in support of the notion that 

brain-cell development continues after birth. In agreement with previ-

ous work, scWGS showed that sSNVs with an overall spectrum resem-

bling COSMIC SBS5 increased in ageing neurons. De novo signature 

analysis revealed two signatures, A1 and A2, dominated by T>C and C>T 

transitions, respectively, that clustered with known somatic mutational 

signatures in cancer, SBS5 and SBS30, respectively. The aetiology of 

SBS5 is unknown, but it has been reported to behave in a clock-like man-

ner in brain and other tissues8,9,32,37. Signature A2 somewhat resembles 

SBS30 and contains C>A and T>C variants—mutation types that are 

linked with oxidative DNA damage and ageing, respectively. SBS30 

has been linked with57 decreased activity of the base excision repair 

protein NTHL1, and our previous work linked neuron C>A variants to 

the base excision repair protein OGG1. Our snRNA-seq data revealed 
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Fig. 5 | Gene downregulation during ageing relates to gene size, expression 

level, gene type and sSNV burden. a, Mixed-effects linear model identifying 

determinants of downregulation in excitatory neurons (model performance 

R2 = 0.54). Gene and exon length positively correlated with ageing-related  

fold change (FC) in expression. Length-normalized expression in excitatory 

neurons and frontal cortex expression (GTEx database) negatively correlated 

with ageing-related fold change. Significance of linear model correlations was 

determined by two-sided t-test. b, Density plots of the length of downregulated 

genes (solid lines) and all expressed genes (dashed lines) for each cell type. 

Mean lengths for downregulated genes are shown; asterisks denote significant 

differences from the mean neuronal downregulated length (two-sided t-test). 

c, Expression of topoisomerase complex genes across cell types. Asterisks 

denote significant differences in the percentage of cells expressing between 

neurons and non-neurons (two-sided Wilcoxon rank-sum test). d, Housekeeping 

genes (n = 1,802) are significantly shorter than neuron-specific genes (n = 288) 

(P = 2.2 × 10−16, two-sided t-test). e, Short (decile 1) housekeeping (n = 180) and 

neuron-specific (n = 28) genes showed differential expression in adult 

excitatory neurons (P = 6.5 × 10−4, two-sided t-test). CPKM, counts per kilobase 

per million. f,g, Fold change (elderly/adult) of housekeeping genes (f) and 

neuron-specific genes (g) by length decile in excitatory neurons (housekeeping 

R2 = 0.50, P = 1.35 × 10−281; neuron-specific R2 = 0.20, P = 1.24 × 10−3; elderly n = 7, 

adult n = 9). h, Fold change in the expression of the indicated gene sets in 

excitatory neurons, from MERFISH data (P = 3.4 × 10−5, two-sided Wilcoxon rank-

sum test; elderly n = 3, adult n = 3). i,j, The sSNV rate per base pair negatively 

correlates with gene length in housekeeping genes (R2 = 0.44, P = 3.52 × 10−2, 

Pearson’s correlation) (i), but not in neuron-specific genes (R2 = 0.02) ( j).  

Simple linear model trend line with grey 95% confidence intervals shown.  

k, The relationship between gene length (black arrow), mRNA expression (blue 

and red), and mutations (yellow) identified in this work. *P < 0.05, **P < 0.01, 

***P < 0.001, ****P < 0.0001. All box plots depict median and first and third 

quartiles. Whiskers show 1.5 × IQR beyond the first and third quartiles.



666 | Nature | Vol 646 | 16 October 2025

Article

that both NTHL1and OGG1 were expressed in neurons, and that this 

expression was dynamic during ageing, but further studies are needed 

to link these changes to signature A2. We note that, despite the high 

similarity between signature A2 and SBS30, A2 in neurons is distin-

guished from this tumour signature by higher levels of C>T at CpG 

dinucleotides. Signature A1 was enriched in coding regions, highly 

expressed genes and known open chromatin sites, whereas A2 showed 

the opposite pattern, being enriched in non-coding regions, highest 

in repressed genes and enriched in loci bearing repressive chromatin  

marks.

As the application of scWGS technologies expands to include other 

cell types in the brain, it will become possible to further elucidate the 

relationship between somatic mutations and gene expression during 

ageing. This will increase researchers’ understanding of the genomic 

and transcriptomic landscape in the ageing brain.
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Methods

Tissue procurement

All tissue was provided by the National Institutes of Health (NIH) Neu-

roBioBank and Banner Sun Health Research Institute Brain and Body 

Donation Program, which obtained written authorization and informed 

consent for all donors. Tissue collection and distribution for research 

purposes were done in accordance with protocols approved by the 

NIH NeuroBioBank (IRB protocol number: HM-HP-00042077) or the 

Human Brain and Spinal Fluid Resource Center (managed by the Sepul-

veda Research Corporation; IRB protocol number: PCC: 2015-060672, 

VA project number: 0002) and by the Banner Sun Health Research 

Institute Brain and Body Donation Program (WCG IRB protocol num-

ber 20120821). Tissue was collected from post-mortem, de-identified 

donors and thus this work is not considered by our Institutional Review 

Board to be research using human subjects. Cases were selected on 

the basis of RNA quality, age at time of death and absence of a history 

of neurological disease or evidence of neuropathology in the tissue. 

Brodmann area 9 or adjacent Brodmann area 46 of PFC was provided 

for each donor and used for both snRNA-seq and scWGS. To obtain 

the donor reference genomes, bulk DNA samples were collected from 

donor-matched tissues, which included heart, liver, muscle, cerebellum 

or cortex. Bulk DNA whole-genome sequencing (WGS) data for donors 

1278, 4638, 1465, 4643, 5657 and 5817 (0.4-year-old male, 15-year-old 

female, 17-year-old male, 42-year-old female, 82-year-old male and 

0.6-year-old male individuals, respectively) were obtained from previ-

ous studies8,58, along with bulk DNA WGS data for donor 5572 (70-year-

old female individual)7.

Isolation of nuclei from fresh-frozen tissue samples

The nuclei isolation protocol was adapted from two previous publica-

tions59,60. All procedures were performed on ice or at 4 °C. Fresh-frozen 

samples were processed using a 7-ml glass Dounce homogenizer with 

approximately 20 mg tissue in 5 ml of filter-sterilized tissue lysis buffer 

(0.32 M sucrose, 5 mM CaCl2, 3 mM MgAc2, 0.1 mM EDTA, 10 mM Tris-

HCl (pH 8), 0.1% Triton X-100 and 1 mM fresh DTT). The homogenized 

solution was loaded on top of a filter-sterilized sucrose cushion (1.8 M 

sucrose, 3 mM MgAc2, 10 mM Tris-HCl (pH 8) and 1 mM DTT) and spun 

in an ultracentrifuge in an SW28 rotor (13,300 rpm, 2 h, 4 °C) to sepa-

rate nuclei.

For nuclei isolated for snRNA-seq, after spinning, the supernatant was 

removed and nuclei were resuspended (1% BSA in PBS plus 25 μl 40 U μl−1 

RNAse inhibitor), then filtered through a 40-μm cell strainer. After 

filtration, nuclei were counted using trypan blue and an automated 

haemocytometer (Countess II; Invitrogen) and diluted to a concentra-

tion of 1,000 cells per μl.

For nuclei isolated for scWGS, the supernatant was removed and 

nuclear pellets were resuspended in ice-cold resuspension buffer 

(8.5 ml 1× PBS with 3 mM MgCl2 + 1 ml 1× PBS with 3 mM MgCl2 and 1% 

BSA + 500 μl sucrose cushion), filtered with a 40-μm cell strainer 

and then stained with an anti-NeuN antibody (directly conjugated to 

Alexa Fluor 488; Millipore MAB377X, clone A60; 1:1,250) and an anti-

rabbit IgG Alexa Fluor 647 antibody as a negative control for 30 min. 

Using a BD Biosciences FACSAria Fusion machine and BD FACSDiva 

Software, forward scatter A (FSC-A) was first used to isolate large 

non-replicating cells. NeuN staining produced a bimodal signal dis-

tribution, distinguishing NeuN+ and NeuN− nuclei (Supplementary 

Fig. 13). Large neuronal nuclei, representing excitatory pyramidal 

neurons, were further identified by collecting the nuclei with the 

highest NeuN signal among the NeuN+ neuronal fraction, and gat-

ing for the population with the highest FSC-A signal and excluding 

Alexa-Fluor-647-high events7. This non-replicating high-FSC-A and 

high-NeuN population was confirmed to be an excitatory neuron 

population, comprising 2–5% of the total population of nuclei in each  

sample7.

Droplet-based snRNA-seq

Droplet-based libraries were generated using the Next GEM Single 

Cell 3′ v.3 or v.3.1 reagent kits (10x Genomics) and the Chromium Con-

troller according to the manufacturer’s instructions. The resulting 

libraries were indexed with the KAPA Unique Dual-Indexed Adapter 

Kit (Roche KK8726) and sequenced on an Illumina NovaSeq 6000 with 

150 paired-end reads by Genuity Science. Samples were prepared in 

batches of up to six donors at a time that always included male and 

female donors as well as mixed ages (Supplementary Table 3). To pre-

vent age or gender bias in our batches, some samples have multiple bio-

logical replicates, prepared on different dates. A single replicate each 

from three distinct donors clustered abnormally during downstream 

analysis and was therefore excluded from analysis. After filtering, the 

only clusters exhibiting batch bias are those that are infant-specific 

and biologically driven (Supplementary Fig. 1). Because those cells 

were present only in infant donors, the only batches contributing to 

those clusters are those that included an infant.

In addition to data generated for this manuscript, we also included 

data that were previously published7: case 1465, a 17-year-old 

male individual. Single nuclei from the PFC were isolated by 

fluorescence-activated nuclear sorting using three gates (large NeuN+ 

nuclei, NeuN+ nuclei and DAPI+ nuclei) to generate three populations 

(large neurons, neurons and all nuclei). For each population, 16,000 

nuclei were sorted into one well of a 96-well plate, which were then 

used to perform snRNA-seq using the Next GEM Single Cell 3′ GEM kit 

v.3.1 and the Chromium Controller (10x Genomics). The three resulting 

libraries were indexed using the 10x Genomics Dual Index Plate and 

sequenced on an Illumina NovaSeq S4. For our downstream differen-

tial expression analysis, all three populations were grouped together. 

Donor 1465 was excluded from analyses of cell-type proportion because 

the tissue had been subjected to fluorescence-activated cell sorting, 

which skewed the cell-type ratios.

scWGS of neurons using PTA

Single neuronal nuclei, prepared as described above, were 

whole-genome-amplified by PTA6,36 using the ResolveDNA Whole 

Genome Amplification kit (BioSkryb Genomics). First, nuclei were 

sorted into cold 96-well plates pre-loaded with 3 μl cold cell buffer 

(BioSkryb) one per well. Nuclei were lysed as per the kit protocol by 

the addition of 3 μl MS mix, followed by a brief spin-down, then 1 min 

of agitation at room temperature at 1,400 rpm on a plate mixer, then 

10 min on ice. Next, 3 μl SN1 buffer was added to each well and the plate 

was again spun down and agitated at 1,400 rpm for 1 min. Next, 3 μl 

SDX buffer was added, and the plate was again spun and agitated at 

1,400 rpm for 1 min. Then, the plate was incubated at room temperature 

for 10 min. Next, reaction mix and enzyme were added to each well, for 

a total reaction volume of 20 μl per well. PTA was performed for 10 h at 

30 °C, followed by enzyme inactivation at 65 °C for 3 min. Amplified 

DNA was cleaned up using an in-house carboxyl magnetic bead clean-up 

solution (0.024 M PEG-8000, 1 M NaCl, 1 mM EDTA, 10 mM Tris-HCl pH 

8, 0.055% Tween 20 and 1.5 ml Cytiva Sera-Mag SpeedBeads Carboxyl 

Magnetic Beads, hydrophobic per 50 ml). DNA yield was determined 

using the QuantiFluor dsDNA System (Promega). Samples were sub-

jected to quality control by multiplex PCR for four genomic loci on 

different chromosomes as previously described8. Amplified genomes 

showing positive amplification for all four multiplex PCR loci were 

prepared for Illumina sequencing.

Libraries were prepared following a modified KAPA HyperPlus Library 

Preparation protocol described in the ResolveDNA EA Whole Genome 

Amplification protocol. In brief, the fragmentation step was skipped 

and end-repair and A-tailing were performed for 500 ng amplified 

DNA input. Adapter ligation was then performed using the SeqCap 

Adapter Kit (Roche, 07141548001). Ligated DNA was cleaned up using 

in-house beads and amplified through an on-bead PCR amplification 
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step. Amplified libraries were selected for a size of 300–600 bp using 

double-size selection. Libraries were subjected to in-house quality 

control using a 5300 Fragment Analyzer Bioanalyzer for DNA fragment 

size distribution (Agilent Technologies). Successfully prepped samples 

were sent to Genuity Science for DNA sequencing, who further tested 

for quality using TapeStation (Agilent Technologies) before process-

ing. Single-cell PTA-amplified genome libraries were sequenced on the 

Illumina NovaSeq 6000 platform (150 bp × 2) at minimum 20× coverage 

(Supplementary Table 12). scWGS of some neurons was performed at 

Harvard for previous publications6,7 (Supplementary Table 12).

Bulk DNA isolation

Genomic DNA was isolated using the QIAGEN DNA Mini kit (QIAGEN 

51304) according to the manufacturer’s protocol for tissues. Approx-

imately 25 mg of fresh-frozen tissue was minced on ice into small 

still-frozen pieces. Tissue was transferred to a dry-ice chilled sterile 

1.5 ml microcentrifuge tubes with 180 μl of buffer ATL. Then, 20 ul of 

proteinase K (20 mg ml−1) was added before 4 h of agitation at 56 °C 

on a thermomixer (1,400 rpm). DNA isolation proceeded as written 

in the protocol with the inclusion of the optional RNase A treatment 

step. A small sample was sent for fragment analysing and gDNA qual-

ity assessment.

Bulk DNA library preparation and sequencing

Bulk DNA was isolated as described above and libraries were prepared 

following the KAPA HyperPlus library preparation protocol. The KAPA 

fragmentation step was included in the bulk processed gDNA samples. 

Bulk gDNA sample libraries were sent to Genuity Science and sequenced 

on the Illumina NovaSeq 6000 platform (150 bp × 2) at minimum 30× 

coverage and used as a reference genome against the case-match 

single-cell genomes. Bulk DNA for cases 1278, 4638, 4643, 5657 and 

5817 was previously isolated and sequenced8 on an Illumina HiSeq X 

Ten platform by Macrogen Genomics or the New York Genome Center.

Analyses of snRNA-seq data

The snRNA-seq reads were aligned to the human genome and assigned 

to genes (GENCODE v.32) by Cell Ranger (v.6.0.2) with parameters 

--expect-cells=10000 --include-introns=true (ref. 61). The barcode and 

UMI solved counts were further processed with Seurat62 (v.4.3.0). The 

following filtering criteria were applied to each sample and cell: more 

than 100 cells in the sample; reads from mitochondrially encoded genes 

less than 5%; and more than 500 expressed genes in the cell. As dis-

cussed above, we further filtered samples ‘5817 200102’, ‘5288 200128’ 

and ‘5887 PFC 210601’ owing to their batch-driven, not cell-type-driven, 

clustering, removing them from downstream analysis. To minimize 

false discovery and focus on universal changes in ageing, mitochondri-

ally encoded genes and genes in sex chromosomes were removed in 

the downstream analysis. The filtered data were log-normalized with 

a factor of 10,000. The top 8,000 variable features were selected for 

principal component analysis (PCA), clustering and uniform manifold 

approximation and projection (UMAP) analysis. The top 30 principal 

components and 0.5 resolution were used for k-nearest neighbours 

(KNN)-graph based clustering, yielding 39 clusters.

Each of the cells in this study was anchored to the cells from Velm-

eshev et al.19 using the RPCA method with the top 30 principal compo-

nents19,62,63. For each of our 39 clusters, the percentages of cell types 

according to Velmeshev et al. were calculated, and the dominant cell 

types were used for each cluster. Those clusters with ambiguous cell 

types according to Velmeshev et al. were considered as artefacts and 

removed from the downstream analysis. We further defined marker 

genes for each cluster using the Seurat FindAllMarkers function by 

comparing each cluster with the remaining clusters, requiring expres-

sion in at least 25% of the cluster and a log2-transformed fold change 

greater than 0.25. For analyses in which excitatory neuron layer or 

inhibitory neuron subtype are not specified, layer- and subtype-specific 

clusters were combined and analysed as a group. Specifically, all neu-

rons from the L2/3, L4, L5/6 and L5/6-CC clusters were combined into 

a non-layer-specific group of excitatory neurons, and neurons from 

the IN-SST, IN-SV2C, IN-PV and IN-VIP clusters were combined into a 

non-subtype-specific group of inhibitory neurons. Finally, we validated 

our cell-type assignment using the following marker genes (also shown 

in Supplementary Fig. 2): CUX2 for L2/3 neurons; RORB for L4 neu-

rons; THEMIS for L5/6-CC neurons; TLE4 for L5/6 neurons; VIP, PVALB, 

SST and SV2C for inhibitory neuron subtypes; OLIG1 for oligodendro-

cytes; AQP4 for astrocytes; PDGFRA for OPCs; PTPRC for microglia; 

and CLDN5 for endothelia.

We identified changes in expression during ageing using the Seurat 

FindAllMarkers function. In brief, a Wilcoxon rank-sum test followed 

by multiple test adjustment was applied to determine significantly dif-

ferentially expressed genes (q < 0.05) between adult and elderly donors 

for each cell type. We further filtered genes expressed in less than 25% 

of elderly cells and adult cells, or with a log2-transformed fold change 

less than 0.5. The same process was used to identify genes differentially 

expressed between infant cells and adult cells.

Continuous method to validate changes in expression during 

ageing

We used linear regression with sex as a covariate as an alternative 

method to determine continuous changes in expression during age-

ing. Average log-normalized expression levels and the age (in years) of 

each donor were used to build the linear model for each cell type. Genes 

with a slope less than −0.001 or greater than 0.001, a P value less than 

0.05 and expressed in at least 25% of adult or elderly cells were con-

sidered as continuously changed genes during ageing. Both methods 

showed strong agreement on genes that go down during ageing across 

cell types, especially in excitatory neurons (Extended Data Fig. 5b and 

Supplementary Table 7). The linear model generally identified more 

genes that go up during ageing than the Wilcoxon test model, owing 

to the relatively strict log2-transformed fold-change cut-off of 0.5.

Analysis of transcriptome change during ageing using three 

groups

We investigated the transcriptome changes during ageing in a more 

continuous way, by dividing our non-infant donors into three groups: 

young adult (5 donors; under 40 years old); adult (6 donors; 40–69 

years old); and elderly (6 donors; 70 years old or over). As shown in 

Extended Data Figs. 5a, 7a,e and 10a,b, the results generally matched 

our conclusions using the two-group comparison (elderly versus adult).

Transcriptional variability during ageing

Transcription variability is calculated by the coefficient of variation 

(CV). Specifically, for each gene in a specific cell type and a specific 

donor, the normalized expression levels (CPM) of all cells are used to 

calculate the CV, defined by the ratio of standard variation to the mean. 

The average CV of all genes is defined as the CV for a specific cell type 

within a particular donor. Comparing elderly and adult donors using a 

Wilcoxon rank-sum test showed a significant increase in transcriptional 

variability for IN-SST neurons but not for any other cell type.

Infant-specific analysis

To identify infant-specific changes in gene expression, we performed 

differential expression testing using the Seurat FindAllMarkers func-

tion as described above, comparing the infant-specific clusters (L2/3-2 

and Ast-3) with the other non-infant-specific clusters of the respective 

cell type. The infant-specific upregulated genes, those with higher 

expression in the infant-specific cluster relative to the other clusters, 

were used for GO analysis (described below).

To determine changes in cell-type proportion, we used a Wilcoxon 

rank-sum test comparing the proportion of each cell type in infants to 

the remaining samples (adult and elderly). Donor 1465 (a 17-year-old 



male individual) was excluded from this analysis owing to the differ-

ences in nuclei preparation before snRNA-seq discussed above.

GO analysis

GO analysis of biological processes was performed on the differentially 

expressed genes for each cell type, both up and downregulated, using 

the R package gprofiler2 (v.0.2.3) with the correction method set to 

‘fdr’ and source set to ‘GO:BP’ from the GO database. For each cell type, 

we used the active genes as the background gene set (indicated in the 

Supplementary Tables as control genes). Active genes were defined as 

those expressed in more than 25% of the cells to be consistent with the 

definition of a differentially expressed gene. Determination of the GO 

term categories shown in Figs. 2b and 3c was done manually (see Sup-

plementary Tables 5 and 9 for mappings). To confirm the distinct GO 

enrichment profile in endothelial cells, we repeated the analysis after 

down-sampling. For each non-endothelial cell type, we chose the top 

121 downregulated genes in elderly donors with the lowest FDR (121 

matches the number of downregulated genes in the endothelial cells). 

There were fewer than 121 downregulated genes in oligodendrocytes, 

and thus down-sampling was not performed for this cell type. The GO 

down-sampling results are reported in Supplementary Table 10.

Random permutation test for shared downregulated genes in 

cell types from elderly donors

To test whether there are significantly more genes downregulated in at 

least one excitatory neuron, at least one inhibitory neuron and at least 

two glial cell types than expected, we performed a random permuta-

tion test. We randomly picked the same number of expressed genes 

to designate as downregulated for each cell type, using a minimum 

expression cut-off of 25% of the adult cells and 20% of the elderly cells, 

and recorded the number of shared genes as the expected value. A total 

of 1,000 permutations were performed, and all of the tests yielded 

fewer shared genes than observed in our data, generating a P value of 

less than 0.001.

Identification of sSNVs in neurons

To identify sSNVs, we used both scWGS and corresponding bulk WGS 

data. scWGS and bulk WGS data were first processed accordingly to 

the GATK (v.4.1.8.1) best practices64. In brief, reads were aligned to the 

human genome using bwa-mem (v.0.7.12) with default parameters. PCR 

duplicates were then filtered using Picard, and the remaining reads were 

recalibrated with GATK BaseRecalibrator and ApplyBQSR. Genotypes 

were then identified with GATK HaplotypeCaller and GenotypeGVCFs. 

Finally, sSNVs were identified by comparing the scWGS data with cor-

responding WGS data from bulk tissues using SCAN2 with the following 

parameters: --snv-min-sc-dp 5 --snv-min-bulk-dp 106. Common SNPs 

from dbSNP (v.20180418) and phasing information from the 1000 

Genomes Project (v.3) were used as a reference panel while running the 

SCAN2 pipeline. We estimated the FDR for SCAN2 as 8.6% in a previous 

publication6.

Signature analysis of sSNVs

We performed signature analysis for sSNVs using the R package Muta-

tionalPatterns (v.3.16.0)65. We first calculated the spectrum of sSNVs 

in the 96-trinucleotide contexts for each neuron from all donors. A 

non-negative matrix factorization (NMF) was applied to the spectrum 

of sSNVs and the signatures were identified. After applying various 

numbers of signatures in the practice, ranging from one to eight, we 

found that two signatures yielded the best performance with regard to 

stability and reconstruction errors (Supplementary Fig. 12). The signa-

tures (A1 and A2) were then compared with the COSMIC v.3 signatures, 

and cosine similarities between signatures were calculated. To confirm 

the reproducibility of our signature analysis, a second method, Signa-

tureAnalyzer, was used with default parameters. SignatureAnalyzer 

identified similar signatures to those identified by MutationalPatterns.

Enrichment and strand bias of sSNVs in genic features and 

chromatin states

To calculate the enrichment of sSNVs in genes and intergenic regions, 

we first simulated random controls with the same mutation spectrum as 

sSNVs restricted to suitable regions (that is, with enough depth) in our 

scWGS and bulk WGS dataset. The numbers of sSNVs and random con-

trols at genes and intergenic regions were then calculated. NMF, using 

the R package MutationalPatterns, was further applied to sSNVs and ran-

dom controls at genes and intergenic regions to trace the contribution 

of signatures A1 and A2. Genes were divided into five groups according 

to their transcriptional activity (CPM) in neurons and glia cells from our 

snRNA-seq data. The same enrichment analysis was also done over the 

15 chromatin states in the human dorsolateral PFC from Roadmap66. 

To test for strand bias in sSNVs, we used the UCSC table browser to 

identify all RefGene transcripts associated with single-neuron sSNVs. 

Only sSNVs that had known transcripts all going in the same direction 

were considered. Transcriptional directions for sSNVs that overlapped 

a transcript were tallied, and the numbers collapsed to report only one 

complement of each base pair (T>A, T>C, T>G, C>A, C>T and C>G).

DepMap analyses of the effects of upregulated and 

downregulated genes on cell viability

The requirement of each gene in overall cell viability was determined 

using the Cancer Dependency Map (DepMap; version Public 22Q4), 

which provides the cell viability effect of each gene knockout across 

1,078 cancer cell lines of varying origin67. Specifically, cell viability is 

determined by performing whole-genome pooled CRISPR screening 

across each cell line, and on the basis of the fold change in the abun-

dance of cells containing Cas9 and guides against each specific gene. 

For example, if cells transduced with Cas9 and guides against a particu-

lar gene were depleted after the screen, this would indicate an essential 

gene. The overall effect of gene knockout for a given cell line is quanti-

fied using a cell population dynamics model called Chronos68, which 

incorporates the efficacy of each guide and copy number correction 

(CRISPR toxicity unrelated to gene function can occur when high copy 

numbers are subjected to CRISPR-mediated strand breaks) to provide 

an overall ‘gene effect score’ that indicates the probability that a given 

cell line is dependent on the gene for survival69. Notably, a value of −1.0 

corresponds to the median gene effect score of all common essential 

genes, whereas a cell line is considered dependent if the gene effect 

score is ≤ −0.5. Positive values would indicate increased cell viability 

or proliferation after loss of the gene.

Among the upregulated and downregulated ‘hits’ from the 

snRNA-seq, those encoding long non-coding RNAs, non-coding RNAs 

or pseudogenes are not covered in the DepMap essentiality analyses 

and thus were not analysed for effects on gene viability. Likewise, sev-

eral coding genes (CECR, NEFL, FTH1, COX4I1, SH3RF3, BMP2K, SHISA8, 

MYRFL and RPS3A) did not have CRISPR screen data yet available, and 

were not analysed.

Defining housekeeping and neuron-specific genes

We first calculated the average logged CPMs for each gene in excita-

tory neurons, inhibitory neurons, microglia and endothelia. Then we 

defined housekeeping genes as genes with a difference of less than 0.1 

between the four cell types that also had an average logged CPM greater 

than 0.1 in each cell type. The genes that fit these criteria also have an 

average logged CPM greater than 0.1 in oligodendrocytes, OPCs and 

astrocytes. The neuron-specific genes were defined as those genes 

with average logged CPMs higher than 0.2 in both neuron groups and 

lower than 0.1 in microglia and endothelia.

Determining what drives transcriptome change during ageing

To determine which feature is likely to drive expression change during 

ageing, we constructed a multiple linear regression model to estimate 
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the contribution of genetic and transcriptomic features to the expres-

sion change during ageing. To avoid the effect of non-expressed genes, 

we only assessed genes whose average logged CPM is at least 0.1 in 

excitatory neurons, inhibitory neurons, microglia, endothelia, oligo-

dendrocytes, OPCs and astrocytes. Gene length, exon length, expres-

sion in each cell type and expression specificity for each cell type and 

neurons were used to build the regression model to predict the fold 

change of gene expression between elderly and adult. Expression speci-

ficity was calculated by the normalized expression in each cell type 

divided by the average normalized expression in the remaining cell 

types. Expression specificity for neurons was calculated by comparing 

the average expression in neurons and the average expression in glia 

cells. We also included broad cell specificity in the model, defined by the 

sum of the difference between maximum expressed cell type and other 

cell types, divided by (number of cell types used – 1). As the number 

of reads captured for each gene could be biased towards gene or exon 

length, we also included gene and exon length-corrected normalized 

expression levels in each cell types as input features. Bulk sequencing 

is also a quantitative way to measure absolute expression levels. Thus, 

we included the expression levels (TPM; transcripts per million mapped 

reads) in human frontal cortex from the GTEx portal70. The squared 

correlation coefficient between the model prediction and observed 

fold change of expression, an indicator of model performance, ranged 

from 0.23 in microglia to 0.54 in excitatory neurons. Among all features 

assessed, gene length yielded the highest correlation coefficient, sug-

gesting that it has a key role in determining expression change during 

ageing in neurons and glia cells.

Validation of snRNA-seq results using published data

No other single published study on human PFC spans the same age 

range as ours, so we looked to two different datasets for validation 

of our results. Herring et al.25 includes PFC from 22 gestational weeks 

to 40 years old. To validate our infant-specific clusters, we obtained 

raw snRNA-seq reads from the Herring paper (publicly available at 

GSE168408) and processed them using Cell Ranger (v.7.0.1) with the 

following parameters: “--include-introns true --nosecondary”. We fil-

tered and clustered the data in the same way as we did with our own 

(described above), using Velmeshev et al. as our reference for cell-type 

identification, confirming the presence of infant-specific astrocytes 

and excitatory neurons in a larger sample size. We compared the expres-

sion of the infant-specific differentially expressed genes from our own 

data (methods described above) with Herring data for infants (prenatal 

samples to 2 years) and adults (15–40 years), validating our findings of 

infant-specific clusters and their respective gene-expression profiles.

To validate the changes we described in the elderly brain, we used 

control PFC (BA46) data from Ling et al.29, which includes donors 

aged 22–97 years. We downloaded their publicly available raw counts 

matrix for each cell type from NeMo (https://assets.nemoarchive.org/

dat-bmx7s1t) and normalized the expression levels using the same 

strategy: to total number of reads for each cell with a factor of 10,000. 

We then compared the expression of genes of interest from our data 

in elderly and adult brains in the Ling data. Specifically, we assessed 

whether common genes are downregulated in elderly cells, and whether 

the decrease of expression during ageing is associated with gene length.

We also used the control PFC data from Mathys et al.30 to validate our 

findings. We downloaded their publicly available raw counts matrix for 

each cell type from the Alzheimer’s disease and ageing brain atlas data 

repository (https://compbio.mit.edu/ad_aging_brain) and normalized 

to the number of UMI reads per cell per 10,000 UMI reads. This data-

set comprises 189 individuals, and includes only elderly donors (over 

70 years old). We then compared the expression of downregulated 

genes, common genes and short and long genes in our adult donors, 

our elderly donors and the elderly donors from Mathys et al. The results 

were consistent with our own dataset: common genes and short genes 

showed decreased expression in neuron and glia cells from elderly 

donors. We also compared the expression levels of genes in donors 

aged 70–79 years and 80 years and over from Mathys et al., and did not 

find a significant change.

MERFISH: sample preparation and imaging

Spatial transcriptomics was performed in two batches using two ver-

sions of the MERFISH platform. Data from each batch were analysed 

separately and not integrated into a single analysis. For batch 1, three 

adult donors and three elderly donors were selected for spatial tran-

scriptomics on the basis of RNA integrity number, tissue availability 

and sex. Vizgen’s protocol for the sample preparation was followed 

with the following modifications. Brains were sectioned and mounted 

on Vizgen MERSCOPE slides. After adhering to the coverslip, samples 

were fixed in prewarmed 4% paraformaldehyde in 1× PBS for 30 min 

at 47 °C, followed by three washes in 1× PBS for 5 min each at room 

temperature. Samples were dried for one hour at room temperature. 

The samples were then incubated overnight in 70% ethanol at 4 °C to 

permeabilize the tissue. Samples were photobleached for 6 h at room 

temperature in the Vizgen Photobleacher. Next, the Vizgen sample 

preparation protocol for FFPE tissues was followed, beginning with 

anchoring pretreatment (step 3 in Vizgen protocol version 9160012 

Rev D). After RNA anchoring, the tissue was embedded in gel embed-

ding solution (containing 0.5% ammonium persulfate, 0.05% TEMED 

and Vizgen’s gel embedding premix) and incubated for 22 h with tissue 

clearing solution (Vizgen Clearing Premix and 1:100 proteinase K) at 

47 °C. The probe library was applied to the sample and incubated for 

48 h at 37 °C. Finally, the samples were washed, incubated with DAPI 

and polyT solution for 15 min at room temperature and washed with 

formamide wash buffer for 10 min at room temperature. For the imag-

ing, the MERSCOPE 500 gene imaging kit was activated with 250 μl 

imaging buffer activator and 100 μl RNAse inhibitor. Fifteen millilitres 

of mineral oil was added through the activation port, the instrument 

was primed and the imaging chamber was assembled according to the 

MERSCOPE user guide. A 10× low-resolution DAPI mosaic of the sample 

was acquired, and the imaging area was selected for data acquisition.

For MERFISH batch 2, an infant and three adult donors were selected 

on the basis of RNA integrity number, tissue availability and sex. All tis-

sue processing steps were performed as described above, but imaging 

was performed on a MERSCOPE Ultra instrument. Owing to uncertainty 

in the back compatibility between instruments, these four samples were 

treated as their own set of data and never compared with the six-sample 

cohort processed on the older instrument.

MERFISH: post-imaging data processing and analysis

For batch 1, after the MERSCOPE run, the data were decoded using 

Vizgen’s analysis pipeline integrated within the MERSCOPE system. 

The Vizgen post-processing tool (VPT, Vizgen) was used to improve 

cell segmentation with a combination of pre-filtering with a Gaussian 

filter and the CellPose algorithm. For batch 2, the four samples imaged 

on the MERSCOPE Ultra were not subjected to additional processing 

using the VPT, because cell segmentation using CellPose was performed 

by the MERSCOPE Ultra instrument.

After cell segmentation, only cells with volumes greater than 200 μm3 

were retained for downstream analysis. The cell × gene count matrix 

was then analysed with the Seurat R package (v.5.1.0) for cell-type 

assignment. Two datasets (one focusing on elderly versus adult, and 

one on infant versus adult) were analysed separated using the same 

pipeline. Specifically, PCA was performed using the count matrix, 

after filtering cells with fewer than 100 transcript counts, followed by 

logCPM transformation. We then performed UMAP and KNN cluster-

ing analysis using the top 30 principal components. The resolution 

of KNN clustering was set to 0.3, yielding 15 clusters in batch 1 and 16 

clusters in batch 2. Each cluster was then assigned a specific cell type 

according to the expression of marker genes (Extended Data Fig. 6b 

and Supplementary Table 11).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168408
https://assets.nemoarchive.org/dat-bmx7s1t
https://assets.nemoarchive.org/dat-bmx7s1t
https://compbio.mit.edu/ad_aging_brain


In batch 1, clusters 12 and 14 showed mixed expression of marker 

genes, preventing cell-type assignment, and were removed from down-

stream analysis. Cluster 1 was composed of excitatory neurons that 

could not be assigned to a specific layer owing to mixed expression of 

layer-specific markers. To investigate the transcriptome change dur-

ing ageing, we compared gene expression between adult and elderly 

donors for each cell type. We normalized gene expression first to cell 

volume (molecules per 2,000 μm3) and then to the average expression 

of a set of control genes that are stably expressed during ageing (Sup-

plementary Table 11). The control genes were defined as genes with a 

log2-transformed fold change of expression between elderly and adult 

donors >−0.3 and <0.3 in our snRNA-seq dataset.

In batch 2, clusters 9, 10, 12 and 15 showed mixed expression of marker 

genes and were removed from downstream analysis. Different layers 

of excitatory neurons and different subtypes of inhibitory neurons 

were analysed together because many of them could not be assigned 

to a specific layer owing to mixed expression of layer-specific mark-

ers. We investigated transcriptome change during brain development 

using the same strategy as we did in the elderly and adult dataset. Gene 

expression between infant and adult donors was compared, after nor-

malizing to cell volume and a set of control genes stably expressed in 

infant and adult donors.

MERFISH gene panel selection

The gene panel used for MERFISH was composed to validate initial 

snRNA-seq findings generated from 13 donors, focusing on differences 

in the elderly and adult donors. It is composed of 70 marker genes (used 

to identify cell types), 33 short housekeeping genes, 33 long housekeep-

ing genes, 24 short neuron-specific genes, 21 long neuron-specific 

genes, 9 ribosomal-protein genes, 10 nuclear-encoded mitochondrial 

genes, 11 DNA damage repair genes and 35 other genes of interest (Sup-

plementary Table 11). All short housekeeping and neuron-specific genes 

came from the first length decile of their respective gene groups and 

all long housekeeping and neuron-specific genes came from the tenth 

length decile of their respective gene groups. After the addition of six 

donors to our snRNA-seq data, our housekeeping and neuron-specific 

gene lists changed slightly, although the method used to generate 

the list did not, and not all of the neuron-specific and housekeeping 

genes in the MERFISH panel met the criteria. The MERFISH gene tab 

of Supplementary Table 11 reports the decile according to the original 

housekeeping and neuron-specific lists used to generate the panel. 

If the gene is present on the current list, the corresponding decile is 

reported in parentheses.

Reporting summary

Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability

Raw RNA-seq and scWGS sequencing data not previously published, 

and MERFISH data, are available at dbGaP (phs003445.v1.p1). Processed 

data are available at https://publications.wenglab.org/SomaMut/. An 

interactive genome browser of the snRNA-seq pseudo bulk expres-

sion data can be found at https://genome.ucsc.edu/s/yutianxiong/

Weng_Lodato_Aging. Previously published single cells analysed in 

this study can be found at dbGaP (phs001485.v3.p1) and NIAGADS 

(NG00121). Previously published bulk DNA-sequencing data can be 

found at dbGap (phs001485.v1.p1), the NCBI Sequence Read Archive 

(SRA; accession numbers SRP041470 and SRP061939) and NIAGADS 

(NG00121). The previously published Velmeshev et al.19 data used for 

cell-type annotation were downloaded from SRA accession number 

PRJNA434002. The previously published Herring et al.25 data were 

downloaded from the Gene Expression Omnibus (GEO) under acces-

sion number GSE168408. The previously published Ling et al.29 data 

were downloaded from the Neuroscience Multi-omic Data Archive 

(NeMo) (https://assets.nemoarchive.org/dat-bmx7s1t). The previously 

published Mathys et al.30 data were downloaded from the Alzheimer’s 

disease and ageing brain atlas data repository (https://compbio.mit.

edu/ad_aging_brain). GTEx data were downloaded from the GTEx 

portal (https://www.gtexportal.org/home/downloads/adult-gtex/

bulk_tissue_expression). GO biological process terms were sourced 

from https://geneontology.org/. DepMap data came from https://dep-

map.org/portal/ using version Public 22Q4.
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Extended Data Fig. 1 | Cell-type ratios do not change significantly with age. 

(a) Neuron to glia ratio shows no significant change with age. (b) Excitatory to 

inhibitory neuron ratio shows no significant change with age. (c) Contribution 

of each cell type to each donor, shown as a percentage of total cells. Columns in 

this panel plus Fig. 2b sum to 100. (d) We see no significant differences between 

elderly and adult in the proportion of inhibitory neuron subtypes. (IN – inhibitory 

neurons, AST – astrocytes, Endo – endothelial cells).



Extended Data Fig. 2 | Marker-gene expression in infant-specific neurons. 

UMAP shows cell-type prediction score for each cell on the plot. Prediction 

scores shown for L2/3 neurons, L4 neurons, L5/6 neurons, L5/6-CC neurons, 

and Neu-mat neurons, a cell type identified in our reference data thought to be 

a mix of ambient RNA and maturing neurons. The infant-specific neuron cluster 

is circled in red and shows mixed cell-type composition based on prediction 

scores. Neuron prediction scores otherwise show cluster-specific patterning.
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Extended Data Fig. 3 | Cortical layers in MERFISH data. MERFISH sections of 

infant male, 15-year-old female, 28-year-old male, and 57-year-old male individuals 

showing marker-gene expression for cortical layers. Circles represent excitatory 

neurons coloured by gene expression. (a,b) Red: CUX2-L2/3; Green: RORB-L4; 

Yellow: CUX2 and RORB co-expression. (b) Blue: HS3ST4-L5/6; Teal: RORB and 

HS3ST4 co-expression. X- and Y-axis values reflect pixel positions.



Extended Data Fig. 4 | Infant-specific gene expression across ages in two 

independent datasets. Heat maps (top) plotting infant-specific gene expression 

ordered by age in this study and Herring et al.25 showing higher expression in 

infant and gestational cases and lower expression in adults for L2/3 neurons and 

astrocytes. Box plots (bottom) showing mean expression of infant-specific genes 

and adult-specific genes in L2/3 neurons and astrocytes across ages in this study 

and Herring et al.25 Expression of infant-specific genes is significantly higher in 

donors 28 days to 301 days, the subset that most closely matches the ages of the 

two infants in this study, compared to donors ≥15. Expression of adult-specific 

genes is significantly lower in the same group of infant donors compared to 

donors ≥15. All box plots depict median, and first and third quartile. Whiskers 

show 1.5 × IQR beyond the first and third quartiles. (Two-sided Wilcoxon 

rank-sum test).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Validation of downregulation during ageing.  

(a) Expression of genes downregulated in the primary analysis (elderly vs. 

adult) are also downregulated when data is broken down into three groups, 

donors 15–39 (red, N = 5), donors 40–69 (magenta, N = 6), and donors 70–104 

(purple, N = 6). Some cell types exhibit continuous downregulation, showing 

significant decreases with each age group while others are significantly 

downregulated between the 15–39- and 40–69-year-old groups but expression 

does not change between the older adult and elderly groups (Two-sided 

Wilcoxon rank-sum test). (b) Volcano plots showing the results of expression 

changes during ageing, determined by linear regression. Regression slope is 

shown on the x axis and -log10(p-value) on the y axis. Dotted lines indicate  

slope and p-value thresholds, slope < −0.001 or > 0.001 and p < 0.05, used to 

determine significance. In addition, genes had to be expressed in at least 25%  

of the elderly or adult cells to be considered. Blue dots indicate genes that were 

also identified as significantly downregulated by pairwise comparison and 

Two-sided Wilcoxon rank-sum test. Red dots indicate genes that were identified 

as significantly upregulated by pairwise comparison and Wilcoxon test.  

Open circles indicate genes that did not meet the pairwise comparison criteria 

for fold change and grey circles indicate genes that met the fold change criteria 

but did not have significant p-values in the pairwise comparison. (c) Box plots 

showing the expression, in log(CPM), of significantly downregulated genes in 

elderly excitatory neurons identified in this study in our donors (left) with  

the donors from Ling et al.29 (right). (d) Box plots comparing expression of 

downregulated genes identified in this study in adults from this study (red, 

N = 9), all donors from Mathys et al.30 (violet, N = 189), elderly donors from this 

study (lilac, N = 7), donors 70–79 from Mathys et al. (light purple, N = 34), and 

donors over 80 from Mathys et al. (dark purple, N = 155). Two-sided Wilcoxon 

rank-sum test comparing adults in this study to each of the Mathys groups  

are all significant. All box plots depict median, and first and third quartile. 

Whiskers show 1.5 × IQR beyond the first and third quartiles. (*, p > 0.05;  

**, p > 0.01; ***, p > 0.001).
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Extended Data Fig. 6 | Spatial transcriptomic validation of snRNA-seq data. 

(a) Representative MERFISH sections, showing the assigned cell type from 

Seurat clustering. (b) UMAP clustering of MERFISH cells showing all identified 

cell types. Clusters of unknown cells were removed from downstream analysis. 

Ext indicates cells that expressed multiple excitatory markers and could  

not be assigned to a specific layer. X- and Y-axis values in a and b reflect pixel 

positions. (c) Fold change of elderly and adult MERFISH cells of 9 ribosomal 

proteins (left) and 10 nuclear-encoded mitochondrial proteins (right) in 

excitatory and L2/3 neurons (Two-sided Wilcoxon rank-sum test, elderly N = 3, 

adult N = 3). (d,e) Log2 fold change of elderly vs. adult nuclear-encoded 

mitochondrial genes by snRNA-seq (Two-sided T-Test, elderly N = 7, adult N = 9) (d) 

and MERFISH (Two-sided Wilcoxon rank-sum test, elderly N = 3, adult N = 3) (e). 

Genes shown in both d and e are colour-coded. All box plots depict median, and 

first and third quartile. Whiskers show 1.5 × IQR beyond the first and third 

quartiles. Points beyond whiskers are outliers. (*, p < 0.05; **, p < 0.01).



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Validation of changes in ribosomal-protein genes 

and nuclear-encoded mitochondrial genes during ageing. (a) Expression of 

ribosomal-protein genes in three age groups, 15–39 (red, N = 5), 40–69 (magenta, 

N = 6), and 70–104 (purple, N = 6) always decreases significantly after age 39.  

(*, p < 0.05; **, p < 0.01; ***, p < 0.001; Two-sided Wilcoxon rank-sum test). (b) Box 

plots showing the regression slope of ribosomal-protein genes (teal, N = 81) and 

nuclear-encoded electron transport chain genes (purple, N = 82). Ribosomal 

genes shown are the same as shown in Extended Data Fig. 8 and mitochondrial 

genes shown are the same as shown in Extended Data Fig. 10. (c) Fold change of 

ribosomal proteins (top) and nuclear-encoded mitochondrial genes (bottom) in 

ageing in the Ling et al.29 data for each cell type. The expression changes match 

those seen in this study. Ext, excitatory neurons; Inb, inhibitory neurons; Oli, 

oligodendrocytes; OPC, oligodendrocyte precursor cells; Ast, astrocytes; 

Micro, microglia; Endo, endothelial. (*, p < 0.05; two-sided T-test, elderly N = 116, 

adult N = 64). (d) Box plots comparing expression of ribosomal-protein genes in 

adults from this study (red, N = 9), all donors from Mathyset al.30 (violet, N = 189), 

elderly donors from this study (lilac, N = 7), donors 70–79 from Mathys et al. 

(light purple, N = 35), and donors over 80 from Mathys et al. (dark purple, 

N = 155). Wilcoxon rank-sum test comparing adults in this study to each of the 

Mathys groups are all significant. (*, p < 0.05; ***, p < 0.001; Two-sided Wilcoxon 

rank-sum test). (e) Expression of nuclear-encoded mitochondrial genes of the 

electro transport chain in three age groups, 15–39 (red, N = 5), 40–69 (magenta, 

N = 6), and 70–104 (purple, N = 6) always decreases significantly after age 39.  

(*, p < 0.05; **, p < 0.01; ***, p < 0.001; Two-sided Wilcoxon rank-sum test). (f) Box 

plots comparing expression of nuclear-encoded mitochondrial genes of the 

electron transport chain in adults from this study (red, N = 9), all donors from 

Mathys et al. (violet, N = 189), elderly donors from this study (lilac, N = 7), 

donors 70–79 from Mathys et al. (light purple, N = 34), and donors over 80 from 

Mathys et al. (dark purple, N = 155). Wilcoxon rank-sum test comparing adults in 

this study to each of the Mathys groups are all significant. All box plots depict 

median, and first and third quartile. Whiskers show 1.5 × IQR beyond the first 

and third quartiles. (***, p < 0.001; Two-sided Wilcoxon rank-sum test).



Extended Data Fig. 8 | Mutation spectrum of sSNVs in human neurons.  

(a) Total mutation accumulation per neuron correlates significantly with age at 

a rate of 15.1 SNVs gained/year (p = 2.2×10−16, Pearson’s correlation). (b) Mutation 

spectrum of sSNVs called in human neuron scWGS data. Each bar represents a 

specific mutation in a different trinucleotide context. (c) Cosine similarity  

of the two signatures, A1 and A2, derived de novo from the total mutation 

spectrum to each single-base substitution signature in the COSMIC database. 

Signature A1 is most similar to SBS5. Signature A2 is most similar to SBS30.
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Extended Data Fig. 9 | Comparison of signature A2 with COSMIC and known 

developmental signatures. (a) Heat map showing cosine similarity of Signature 

A2, the mutation spectrum of the infant cells included in this study, signatures 

identified in Bizzotto et al.39, Coorens et al.41 and Park et al.40, and COSMIC SBS1, 

SBS5, and SBS30. (b) COSMIC SBS1, SBS5, and SBS30 contribution to Signature 

A2, the infant mutation spectrum, and developmental signatures identified in 

Bizzotto et al., Coorens et al. and Park et al. (c) Mutation plots of the signatures 

compared in a. Percentage of C>T mutations at CpG sites is higher than the 

percentage of C>N mutations at CpG sites for all signatures except SBS30.  

Our mutation calling algorithm, SCAN2, is biased against early developmental 

somatic mutations, because SCAN2 requires called somatic variants in single 

cells to show no mutant reads in corresponding bulk tissue from the same 

donor. In practice, this means that many somatic mutations that occur very 

early in development, which are widely distributed across the body at a high 

mosaic fraction, are filtered out by our analysis, whereas late-occurring, lower 

allele fraction variants are likely to remain. Non-scWGS studies designed to 

study developmental mosaic mutations do not filter out early variants, probably 

contributing to differences in the overall patterns of mutations between A2 and 

clonal mosaics identified in other studies. Thus, Signature A2 may represent a 

mutational process that is prominent in late stages of development that persists 

in postnatal life.



Extended Data Fig. 10 | Validation of changes in gene length and expression 

during ageing. (a,b) Box plots show expression of housekeeping genes in decile 

1 (a) and neuron-specific genes in decile 10 (b) in three age groups, 15–39 (red, 

N = 5), 40–69 (magenta, N = 6), and 70–104 (purple, N = 6). Housekeeping genes 

always decreases significantly after age 39, while neuron-specific genes show  

no significant changes. (**, p < 0.01; ***, p < 0.001; Two-sided Wilcoxon rank-sum 

test). (c,d) Linear regression slope of housekeeping (c) and neuron-specific (d) 

genes by length decile. (e,f) Comparison of elderly to adult expression of 

housekeeping (e) and neuron-specific genes (f), as determined in this study,  

by size decile in Ling et al.29 (R2 = 0.16, p = 2.29×10−67 and R2 = 0.0009, N.S., 

respectively, elderly N = 116, adult N = 64). Housekeeping genes demonstrate the 

same length dependent expression changes seen in this study. Neuron-specific 

genes show no significant relationship between length and expression change, 

matching the findings of this study. (g,h) Box plots show expression of 

housekeeping genes in decile 1 (g) and neuron-specific genes in decile 10 (h) in 

adults from this study (red, N = 9), all donors from Mathys et al.30 (violet, N = 189), 

elderly donors from this study (lilac, N = 7), donors 70–79 from Mathys et al. 

(light purple, N = 34), and donors over 80 from Mathys et al. (dark purple, 

N = 155). Two-sided Wilcoxon rank-sum test comparing adults in this study  

to each of the Mathys groups are all significant in housekeeping genes, but 

neuron-specific genes show no significant changes. All box plots depict median, 

and first and third quartile. Whiskers show 1.5 × IQR beyond the first and third 

quartiles. (***, p < 0.001; Wilcoxon rank-sum test).
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